

1

XRS
®

Extensible Radio Specification

Version 1.3

 CONFIDENTIAL

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

2

Limited Evaluation License
WiNRADiO Communications (hereinafter called ‘WiNRADiO’) hereby grants to you at no charge a non-

exclusive, non-transferable, worldwide, limited license (without any right to sublicense) under WiNRADiO’s

intellectual property rights that are essential to practice the Extensible Radio Specification (XRS, hereinafter

called ‘Specification’) to use the Specification for internal evaluation purposes only. Other than this limited

license, you acquire no right, title, or interest in or to the Specification and you shall have no right to use the

Specification for productive or commercial use. Should you wish to use the Specification for productive or

commercial use, you need to apply for XRS Client Developer License or XRS Server OEM License.

Confidential Information

This documentation is the confidential and proprietary information of WiNRADiO. You shall not disclose

this confidential information and shall use it only in accordance with the terms of this license agreement you

entered into with WiNRADiO.

Limited Warranty

The specification is provided ‘AS IS’ and all warranties whether express, implied, statutory or otherwise,

relating in any way to the subject matter of this licence or to this licence generally, including without

limitation, warranties as to: quality; fitness; merchantability; correctness; accuracy; reliability;

correspondence with any description or sample, meeting your or any other requirements; uninterrupted use;

compliance with any relevant legislation and being error or virus free are excluded.

Where any legislation implies in this agreement any term, and that legislation avoids or prohibits provisions

in a contract excluding or modifying such a term, such term shall be deemed to be included in this agreement.

However, the liability of WiNRADiO for any breach of such term shall if permitted by that legislation be

limited, at WiNRADiO’s option, to any one or more of the following: if the breach related to goods: the

replacement of the goods or the supply of equivalent goods; the repair of such goods; the payment of the cost

of replacing the goods or of acquiring equivalent goods; or the payment of the cost of having the goods

repaired; and if the breach relates to services: the supplying of the services again; or the payment of the cost

of having the services supplied again.

Licensee warrants that it has not relied on any representation made by WiNRADiO or upon this specification

in any way.

Limitation of Liability

Except for the limited warranty (above), WiNRADiO shall not be under any liability to Licensee in respect of

any loss or damage (including consequential loss or damage) however caused, which may be suffered or

incurred or which may arise directly or indirectly in respect to the use of this specification or the failure or

omission on the part of WiNRADiO to comply with its obligations under this licence.

Trademarks

WiNRADiO, VisiTune and XRS are trademarks or registered trademarks of WiNRADiO Communications in

the United States of America and other countries of the World.

Copyrights

The copyright in this document is owned by WiNRADiO Communications. All rights reserved.

Copyright © 1999-2012 WiNRADiO Communications, Melbourne, Australia

20-Jan-2012

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

3

XRS 1.3
(Note: If you are reading this document as a PDF file, turn on the “Bookmark” view for easy navigation.)

Contents

LIMITED EVALUATION LICENSE .. 2

Confidential Information .. 2
Limited Warranty .. 2
Limitation of Liability ... 2
Trademarks ... 2
Copyrights .. 2

XRS 1.3 .. 3

CONTENTS ... 3
INTRODUCTION .. 7
XRS PLUG-IN BASICS .. 8

How Plug-ins Work ... 8
Overview of Plug-in Structure .. 9

XRS DEVELOPMENT OVERVIEW ... 9
Conventions .. 9
Writing Plug-ins.. 9
Registering Plug-ins ... 9
Initialisation .. 10
Device Information ... 12
Instance Destruction ... 12
Shutdown .. 12
Minimal Plug-in Example ... 13

XRS EVENT HANDLING AND CONTROL ... 14
Start-up Conditions ... 14
Notifications .. 14
Commands .. 14
User Interface Control .. 15
Memory Control.. 15
DSP Control ... 16

XRS API REFERENCE .. 19
PLUG-IN FUNCTIONS .. 19

xrsPluginInit ... 19
xrsPluginDone .. 20
xrsPluginStart ... 20
xrsPluginNotify ... 22

XRS FUNCTIONS ... 24
xrsCopyRadioDevCaps ... 24
xrsFreeRadioDevCaps .. 25
xrsValidateServer ... 25
PluginProc .. 25

XRS STRUCTURES ... 29
AGCEXCAPS .. 29
AGCEXPARAMS .. 29
CHANNEL_SCANNED ... 30
CLIENTSERVER... 30
DEMODDEF .. 31
DEMODSIGNALDATA .. 32
DF_ANGLE_STRUCT .. 32
DSPCAPS ... 33
FREQRANGE ... 34
GPS_POSITION ... 35
GRAPHEQCAPS .. 35
MEMORYENTRY .. 36
MODDEF ... 40
MODPARAMS .. 41

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

4

PARAEQCAPS .. 43
PARAEQPARAMS .. 44
RADIODEVCAPS ... 45
RECORDINGPARAMS ... 54
SIGNAL_PARAMS .. 55
SQUELCHSETTINGS ... 55
TONECAPS .. 57
TXAUDIOPROC ... 57

XRS COMMANDS .. 59
PM_CAPABILITIES ... 59
PM_CONNECTREMOTE ... 59
PM_CLOSED ... 59
PM_CREATEFOLDER ... 60
PM_DELETEFOLDER ... 60
PM_DISABLE ... 60
PM_FILTERFLAGS ... 61
PM_GETMEM .. 62
PM_GETMEMFILE ... 62
PM_GETNEXTFOLDER .. 62
PM_GETNEXTMEM .. 63
PM_GETNEXTPLUGIN ... 63
PM_GETNUMMEMS ... 64
PM_GETSETTINGS ... 64
PM_GETSUBFOLDER .. 64
PM_MINIMIZE... 65
PM_MOVEFOLDER .. 65
PM_OPENFOLDER ... 65
PM_POWER ... 66
PM_RECALLMEM ... 66
PM_SELECTBANK .. 67
PM_SETMEMFILE .. 67
PM_STARTPLUGIN ... 67
PM_STOPPLUGIN ... 68
PM_STOREMEM ... 68
PM_VISIBLE .. 68
PMR/T_AUDIOFILTER ... 69
PMR/T_DSPADCSTART .. 70
PMR/T_DSPADDINBUF.. 70
PMR/T_DSPCLOSE ... 71
PMR/T_DSPDACSTART .. 71
PMR/T_DSPINPUT .. 72
PMR/T_DSPREADBYTE .. 72
PMR/T_DSPSENDBUF .. 72
PMR/T_DSPSENDBYTE .. 73
PMR/T_DSPSTART .. 73
PMR/T_EXTOSC .. 73
PMR/T_FREQ... 74
PMR/T_FREQUENCY .. 74
PMR_AFC .. 75
PMR_AGC .. 75
PMR_ATTEN .. 76
PMR_AUDIOSRC ... 76
PMR_BALANCE ... 77
PMR_BANDWIDTH ... 77
PMR_BLOCKSCAN ... 78
PMR_DEMODSIGNAL .. 78
PMR_DFANGLE .. 79
PMR_DFANGLEMODE ... 79
PMR_DFAVGENABLE .. 79
PMR_DFAVGLENGTH .. 80
PMR_DFCOMPASS ... 80
PMR_DFCOMPASSOFFSET ... 80
PMR_DFCOMPASSPITCH .. 81

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

5

PMR_DFCOMPASSROLL ... 81
PMR_DFRPS .. 81
PMR_DFSTART ... 82
PMR_GPSPOS ... 82
PMR_IFGAIN ... 82
PMR_IFSHIFT ... 83
PMR_IFSPECTRUM .. 83
PMR_LOUD ... 84
PMR_MODE .. 84
PMR_MODEXDATA .. 85
PMR_MONO .. 85
PMR_MUTE ... 86
PMR_NOISEBLANKER.. 86
PMR_NOISEREDUCT ... 87
PMR_NOTCH ... 87
PMR_PREAMP... 87
PMR_RECORDING ... 88
PMR_RFINPUT .. 88
PMR_SIGNALPARAMS.. 89
PMR_SQUELCH .. 89
PMR_STOPSCAN ... 90
PMR_TRACKID ... 90
PMR_TRUNKFREQ ... 90
PMR_VOLUME .. 91
PMT_ANTIVOX .. 91
PMT_AUDIOPROC ... 92
PMT_MODE ... 92
PMT_MODSRC .. 93
PMT_RFPOWER .. 94
PMT_SELCALL .. 94
PMT_TX.. 96
PMT_XMTCTL ... 96

XRS NOTIFICATIONS ... 97
PN_CAPABILITIES .. 97
PN_CLOSE ... 97
PN_DISABLED... 97
PN_MEMBANK .. 98
PN_MEMCHANGE .. 98
PN_MEMFILE .. 98
PN_MEMFOLDER ... 98
PN_MEMRECALL .. 99
PN_MINIMIZED .. 99
PN_PLUGINSTARTED .. 99
PN_PLUGINSTOPPED.. 99
PN_POWER .. 100
PN_SERVERLISTEN .. 100
PN_VISIBLE ... 100
PNR/T_AUDIOFILTER .. 101
PNR/T_DSP .. 101
PNR/T_DSPINBUFFULL ... 102
PNR/T_DSPINPUT ... 102
PNR/T_DSPREQREAD .. 102
PNR/T_DSPREQSEND .. 103
PNR/T_DSPREQUEST ... 103
PNR/T_DSPSENDBUFDONE .. 103
PNR/T_EXTOSC ... 103
PNR/T_FREQUENCY .. 104
PNR_AFC ... 104
PNR_AGC ... 104
PNR_ATTEN ... 105
PNR_AUDIOSRC ... 105
PNR_BALANCE ... 105
PNR_BANDWIDTH .. 106

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

6

PNR_CHANNELSCANNED ... 106
PNR_DEMODSIGNAL ... 106
PNR_DFANGLE ... 107
PNR_DFANGLEMODE ... 107
PNR_DFAVGENABLE ... 108
PNR_DFAVGLENGTH .. 108
PNR_DFCOMPASS .. 108
PNR_DFCOMPASSOFFSET ... 108
PNR_DFCOMPASSPITCH .. 109
PNR_DFCOMPASSROLL .. 109
PNR_DFRPS .. 109
PNR_DFSTART .. 109
PNR_GPSPOS .. 110
PNR_IFGAIN .. 110
PNR_IFSHIFT .. 110
PNR_IFSPECTRUM ... 111
PNR_LOUD .. 111
PNR_MODE ... 111
PNR_MODEXDATA ... 112
PNR_MONO ... 112
PNR_MUTE .. 113
PNR_NOISEBLANKER .. 113
PNR_NOISEREDUCT .. 113
PNR_NOTCH ... 114
PNR_PREAMP ... 114
PNR_RECORDING .. 114
PNR_RFINPUT .. 114
PNR_SCANFINISHED ... 115
PNR_SCANNER ... 115
PNR_SIGNALPARAMS .. 115
PNR_SLEVEL ... 116
PNR_SLEVELDBM .. 116
PNR_SQUELCH ... 116
PNR_SQUELCHED ... 117
PNR_TRACKID .. 117
PNR_TRUNKFREQ .. 117
PNR_TRUNKID .. 117
PNR_VOLUME... 118
PNT_ANTIVOX... 118
PNT_AUDIOPROC .. 118
PNT_MEASUREMENT .. 119
PNT_MODE ... 119
PNT_MODSRC ... 120
PNT_RFPOWER... 121
PNT_SELCALL ... 121
PNT_TX .. 122
PNT_XMTCTL .. 123

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

7

Introduction

The XRS (Extensible Radio Specification) is a standard-based platform for the control of radio devices (such

as receivers or transmitters) by a computer.

The need for this platform has arisen due to the increased integration of radio and computing devices. Many

new radio communications protocols (for example trunking radio) and modulation modes (such as Digital

Audio Broadcasting) require the availability of computing power. At the same time, computing power is

being used to enhance radio devices by adding extra functions and, increasingly often, to replace

conventional front panel controls by a computer keyboard and screen.

A standard to facilitate a uniform way of controlling radio devices by a computer has been long overdue.

The XRS defines the interface between a radio device control program (the ‘Server’) and an add-on plug-in

module (the ‘Client’). This specification is flexible enough to allow for a wide range of radio devices to be

controlled by a wide range of such plug-ins. This means that application software developed for one

particular model of a radio device will work equally well on another, provided both the radio device software

and the plug-in are XRS-compliant.

The introduction of XRS benefits everyone:

 End users, because XRS application software purchased for one model of an XRS-compliant radio

device will work equally well with another. The greater number of XRS applications, the better value an

investment in an XRS-compliant radio device will represent for the radio device user.

 Developers, because once developed, an XRS application software will work across all XRS-compliant

radio devices, not just one model of one particular manufacturer. This saves time for application

development and increases the market size for radio device applications, thus providing a better return

on investment and a greater incentive to develop add-on software.

 Manufacturers, because they can take advantage of already existing XRS applications. By making a

radio device software XRS-compatible, manufacturers make it automatically more useful to prospective

purchasers, and therefore more attractive to the market.

The primary design goals for XRS were:

 To enable new radio functions to be developed separately, in a modular way, and added quickly and

easily to expand the functionality of the radio device control software.

 To eliminate compatibility issues between different models of radio devices. Once written, an XRS

application will work with every XRS-compliant radio device.

 To provide an open platform for third party software developers. The XRS developer information

exposes all interfaces needed to enable development of new radio control tools and applications. The

XRS standard is designed from the ground up to provide a flexible platform for development of software

suitable for a wide variety of radio applications.

 To provide the opportunity for radio device manufacturers to take advantage of existing and future XRS

applications. By licensing the XRS server technology for use in their products, other radio manufacturers

will benefit of the combined efforts of all third-party XRS developers.

 To ensure that the XRS standard itself is extensible in order to be able to accommodate new advances in

both radio and computer technology.

The XRS API as described in this document is provided for evaluation only, under the terms of the

Evaluation License Agreement with which you agreed. It cannot be used for any other productive or

commercial purpose.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

8

If you wish to become an XRS Client developer, you need to apply for the XRS Developer's License. This

license imposes certain essential restrictions and requirements, which are necessary to protect the integrity of

the XRS specification. This license, when granted, is free. You may download the Developer's License

Agreement from the XRS Web page: http://xrs.winradio.com. Upon signing of the License Agreement by

both parties, you will be also given access to a special XRS Resource Page, with source code examples that

substantially simplify XRS Client development.

If you wish to develop XRS Server software which controls the radio device at the lowest level (ie. such

software which is capable of accepting XRS plug-ins), you will need to apply for an XRS OEM License. This

license is not free. You may also apply for such license from the above XRS Developer's Web page.

XRS software can be developed in most major development environments including C/C++ and Delphi. An

XRS implementation is platform-specific and therefore must be ported to every operating system and

processor platform upon which it is to be deployed.

This document refers mainly to the Windows environment but in the future will expand to cover Macintosh

and Linux (parts of this document will outline differences between the three platforms).

Note: In the following text, a ‘plug-in’ or a ‘client’ will mean ‘XRS Client’, and ‘server’ will mean ‘XRS

Server’, unless indicated otherwise.

XRS Plug-in Basics

How Plug-ins Work

When an XRS-compliant radio device application (‘XRS Server’) starts, it searches for plug-in files with a

‘.XRS’ extension in the plugins folder in the same folder as the application. To allow plug-ins to share the

same location for different applications, the following locations can be checked:

 32-bit Windows: the application should check the registry for the SearchPath value in the

HKEY_LOCAL_MACHINE\Software\XRS key. Plug-ins should store setting information in a

subkey in the HKEY_CURRENT_USER\Software\XRS key.

 Linux and 16-bit Windows: the application should check the path set by the optional environment

variable XRS_PLUGIN_PATH.

When the application starts it searches the folder(s) for all XRS plug-ins and attempts to load and initialise all

plug-ins that are found.

The following stages outline the life of a plug-in from loading to shutdown:

 At start-up, the plug-in is loaded and the xrsPluginInit function is called to inform the plug-in of

the supported XRS version. The plug-in returns the name of itself and informs the application what it

does. It can also inform the application to start it immediately.

 When the plug-in is to be started (by auto-starting, user initiation or by another plug-in), the

xrsPluginStart function is called. A new instance of the plug-in has to be created and the plug-

in instance has to return a unique identifier to itself. Multiple instances can exist when more than one

radio device is open in the same application where each device has started the same plug-in. Each

radio device instance passes a unique identifier to the plug-in instance when it is started.

 After a plug-in instance is started, it will receive notifications (or events) from the application through

the xrsPluginNotify function. It can also control most aspects of the application if it wishes to

do so.

 When a plug-in instance receives a PN_CLOSE notification, it must shutdown and destroy the

instance that was started. The plug-in instance must inform the application that it has closed down by

issuing a PM_CLOSED command.

 When the application closes down, the xrsPluginDone function is called to let the plug-in know it

is about to be unloaded from memory.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

9

Note: XRS API calls and callbacks use the main application thread. In general, if a plug-in intends to

generate additional threads to handle processing at any stage in its lifespan, care should be taken to isolate

these from the API calls.

Overview of Plug-in Structure

A plug-in is a native code library whose file extension is .XRS. Internally, the file type depends on the

platform:

 Windows: Dynamic Link Library files (.DLL)

 Linux: Shared Object files (.SO or .DSO)

 Mac OS: PowerPC Shared Library files or 68K code resources

The actual programming language used does not matter as long as it can generate at least one of the above

file types.

Although it is a native code library and is therefore platform specific and runs from an XRS compliant

application, the XRS API is designed to provide the maximum degree of flexibility and to be functionally

consistent across all platforms. The main platform specific differences will occur from the underlying

operating system’s API.

Note: XRS is different from other platform-native inter-application architectures such as OLE, where

components developed for these systems are relatively complex and heavyweight. XRS is specifically

designed to extend radio communications software and are therefore relatively simple and lightweight.

XRS Development Overview

Conventions

Throughout the rest of the document, the following terms are used:

DSP: any device performing analog-digital and/or digital-analog conversion, and may include an

either digital signal processor in between, or DSP emulation in software

DWORD: a 32-bit integer (typically signed unless stated)

High word: high 16-bits of a DWORD (bits 16 – 31), typically signed unless stated

Low word: low 16-bits of a DWORD (bits 0 – 15), typically signed unless stated

NULL: zero

XRS: Extensible Radio Specification

Writing Plug-ins

Once you become a Licensed XRS Client Developer, creating XRS plug-ins is a simple process:

1. You can derive your plug-in from sample templates provided on the XRS Client Developer Resource

Web Page or you can construct a plug-in from scratch using header files.

2. Each plug-in requires the implementation of four essential API functions that are documented in the

following pages. The plug-in must be able to close when requested to do so by the server.

3. Once a plug-in has been written, it must be built and installed.

4. Finally your plug-in has to be tested and debugged as necessary.

Note: You can avoid many developmental problems by working in stages and testing at each stage. In the

first stage, you can create a plug-in project, handle the basic functionality first (described later), build it and

install it. In the second stage, you add the special functionality that makes the plug-in unique. The following

chapters will give more information about the functionality that can be added.

Registering Plug-ins

In order to identify a plug-in, XRS-compliant applications (XRS servers) first locate the plug-in library file

with a .XRS extension and load it into memory.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

10

For each plug-in loaded, the application calls the xrsPluginInit function to inform the plug-in which

version of XRS it supports. If the plug-in handles the XRS version correctly, and if the plug-in verifies the

validity of the XRS server, it then returns its name (up to 64 characters in length) and what type of plug-in it

is (there are several broad categories defined). The application generally puts all supported plug-ins in a

menu for the user to initiate. Each plug-in should have a unique name to avoid confusion for the user.

The return value also specifies the degree of control the plug-in can exercise over the server, and how the

server should handle it. For example, the plug-in can request the server to start it immediately (an ‘auto-start’

plug-in), to hide it from the menu (a ‘hidden’ plug-in, which can be only started automatically or from

another plug-in), etc.

Note: An auto-start plug-in can also ‘hide’ the server and so effectively take over the user interface of the

radio device.

Initialisation

The application calls xrsPluginInit once when the plug-in is loaded, before the first instance is created.

This function is used to allocate the memory and resources shared by all instances of an XRS plug-in.

C/C++:

int xrsPluginInit(int iXRSVer, PCHAR lpServerId, PCHAR lpName,

int cbName);

Delphi:

function xrsPluginInit(iXRSVer: Integer; lpServerId, lpName: PChar;

cbName: Integer): Integer;

When the application shuts down, the application calls xrsPluginDone, which releases the memory or

resources allocated by xrsPluginInit.

The plug-in should check the version information in the iXRSVer parameter to verify that it is compatible

with the API capabilities provided by the application. The low-byte specifies the minor version number, and

next most significant specifies the major version number. For example, for version 1.0 iXRSVer will equal

0x0100.

Next the plug-in must validate the server ID by calling xrsValidateServer and if it is valid, the

function returns TRUE. If xrsValidateServer returns false, the plug-in must return zero.

No XRS API calls can take place in either direction until the initialisation completes successfully.

If a plug-in cannot initialise (resource allocation error, unsupported XRS version, or invalid XRS server), it

must return zero.

Successful initialisation must return a positive value, where the lowest byte informs the server about the

degree of control this plug-in is allowed:

Bits 0 & 1:

0 = Failure

1 = Doesn’t take control, but can occasionally change various settings.

2 = Takes temporary control, it should disable controls that is overriding.

3 = Takes full control, hides/minimises/disables panel or appropriate controls.

Bits 2 & 3:

0 = Doesn’t use DSP.

4 = Occasionally uses the DSP, it will have to share with other similar plug-ins.

8 = DSP read raw audio data, can operate with other plug-ins that also use the same data.

12 = DSP full control, no other DSP based plug-ins can operate at the same time.

Note: ‘DSP’ means the DSP facility available as part of the radio device. This does not include the signal

processing facility (sound card) provided by the control computer.

Bit 4:

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

11

Uses a sound device, cannot operate with other similar plug-ins.

Note: ‘Sound device’ is typically a sound card available on the control computer.

Bit 5:

Informs the application to start the plug-in immediately. (An ‘auto-start’ plug-in.)

Bit 6:

Informs the application not to show the plug-in in the plug-in list and/or menu but can still be accessed

from the PM_GETNEXTPLUGIN command. (A ‘hidden’ plug-in.)

Bit 7:

Indicates that the plugin window handle will be returned in xrsPluginStart function and allows the XRS

server to manipulate it (for example to embed to the application panel).

The second lowest byte specifies the class of the plug-in (this can be ORed with the above bit specifiers):

0x0000: Standard class – most plug-ins will use this category.

0x0100: Trunking class – plug-ins that perform trunking operations (decoding, tracking, etc) use this

category.

0x0200: DSP class – plug-ins that perform digital signal processing use this category.

0x0300: Decoder class – plug-ins that perform any decoding of the received signal use this category.

0x0400: Demodulator class - plugins that perform demodulating of the received signal use this category. For

proper running of all other plug-ins, demodulator class plug-ins should be the last ones destroyed.

0x0500: DF class - plugins that perform direction finding of the received signal use this category.

Note: The class specifiers may be for example used for the plug-ins to appear in different menus in the server

application. For example, in WiNRADiO receivers, Standard class plug-ins are shown in the “Plug-ins”

menu, Trunking class in the “Trunking” menu, DSP class in the “Digital Suite” menu, Decoder class in the

“Decoders” menu, etc.

Instance Creation

Any time after initialisation, a plug-in instance can be created or started. More than one instance of the same

plug-in can exist if the application supports operation of multiple radio devices or the same application space

supports operation of multiple devices.

A plug-in instance can be created by user initiation from a menu, started automatically by the application (at

start-up or any time after) or from another plug-in.

C/C++:

DWORD xrsPluginStart(HWND hAppWnd, LPRADIODEVCAPS lpRadioDevCaps,

 PLUGINPROC lpPluginProc, PDWORD lpFilterFlags);

Delphi:

function xrsPluginStart(hAppWnd: HWND; lpRadioDevCaps: PRadioDevCaps;

 lpPluginProc: TPluginProc; var lpFilterFlags: Longint): Integer;

The hAppWnd parameter specifies a handle to the application’s device window. It can either be the

application’s main window if it only controls one device or it can be child window for the device if the

application supports control of multiple devices. Generally, this is just used to identify the radio device in a

multiple instance situation.

The lpRadioDevCaps parameter points to a RADIODEVCAPS structure which specifies the capabilities of

the radio device. The radio device can support receiving, transmitting or both. The memory utilised by this

structure is only temporary so if the information is required later, a copy must be made. The plug-in should

also check various fields to make sure it can support the device properly and that it is suitable for the device.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

12

The lpPluginProc parameter is a pointer to a application provided callback function that the plug-in can

use to control the operation of the radio device and also perform other operations including informing the

application when it closes down.

C/C++:

typedef DWORD (CALLBACK* PLUGINPROC)(DWORD, int, DWORD, int, LPVOID);

Delphi:

type

TPluginProc = function (hPlugin: Longint; uMsg: Integer;

 dwParam: Longint; cbData: Integer; lpData: Pointer): Longint;

After a PM_CLOSED command is issued through this callback, the plug-in will not receive any more

notifications nor can it issue any commands.

The lpFilterFlags parameter points to a 32-bit variable that the plug-in may use, with a combination of

PNF_xxx flags, to filter out any notifications that it does not wish to receive. Filter flags are defined for

broad categories of notifications, so if one notification is required in a group of other notifications that are not

required, then the group should not be filtered. The notification filtering change be changed at any time

during the instance of the plug-in by issuing a PM_FILTERFLAGS command. By default, no notifications

are filtered out (that is, all notifications are received). Any notifications that are not required by the plug-in

can be ignored except the PN_CLOSE notification.

During the start procedure, a plug-in may issue commands to the application but must pass an instance

identifier of zero to the callback procedure.

If the plug-in instance starts successfully, it must return a positive value that is unique for the plug-in

instance. The application will not use the value except as an identifier in the notification function.

If it is not started successfully, the function must return zero.

Device Information

After a plug-in has been installed, it can be started at any time. When the plug-in is started, a structure is

passed to the plug-in to provide detailed information on the underlying radio device (receiver and/or

transmitter). Information includes the manufacturer and product, supported frequency ranges and modes and

other capabilities of the device.

Note: For more information on the information provided, see the section on the XRS Structures, especially

the Radio Device Capabilities Structure (RADIODEVCAPS).

Instance Destruction

Any time after an instance is created with xrsPluginStart, the instance can be closed with a

PN_CLOSE notification received in the xrsPluginNotify command.

Instances can be closed by the user, another plug-in or when the application shuts down. A plug-in instance

can also close itself.

When the instance is closed, it must issue a PM_CLOSED command to the application, after which the plug-

in will not receive any more notifications nor can it issue any further commands. If the plug-in sets bit 16 in

the dwParam parameter of the PM_CLOSED command, the application’s radio device instance should close

too. If the application supports only one radio device, the entire application should close.

Shutdown

When the application is about to close, before it unloads the plug-in module, it will call the plug-in’s

xrsPluginDone function. This gives the plug-in an opportunity to delete all data and resources allocated

in the xrsPluginInit function that were shared by all instances. It also gives the plug-in a change to

cancel any outstanding I/O requests, delete threads it created, free memory and perform any other closing

tasks.

C/C++:

void xrsPluginDone(void);

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

13

Delphi:

procedure xrsPluginDone;

Minimal Plug-in Example

This example demonstrates the minimum requirements for a plug-in in C:

/* Global variable to store callback address */

PLUGINPROC PluginProc = NULL;

static char PluginName[] = "Minimal Plug-in Example";

/* Initialisation function */

int XRSAPI xrsPluginInit(int iXRSVer, PCHAR lpServerId, PCHAR lpName,

int cbName)

{

 /* Validate the server */

 if (!xrsValidateServer(lpServerId))

 return 0;

 /* Tell application the name of the plug-in */

 strncpy(lpName, PluginName, cbName);

 /* Plug-in initialised correctly, and is a simple plug-in type */

 return 1;

}

#define INSTANCE_HANDLE 1

/* Creation function */

DWORD XRSAPI xrsPluginStart(HWND hAppWnd, LPRADIODEVCAPS

lpRadioDevCaps, PLUGINPROC lpPluginProc, PDWORD lpFilterFlags)

{

 /* If PluginProc is defined, then an instance is already running */

 if (PluginProc) return 0;

 /* Store pointer to callback function */

 PluginProc = lpPluginProc;

 /* Receive no notifications */

 *lpFilterFlags = PNF_ALL;

 /* Since this is a single instance plug-in, return any value */

 return INSTANCE_HANDLE;

}

void XRSAPI xrsPluginNotify(HWND hAppWnd, int uMsg, DWORD dwData,

int cbData, LPVOID lpData)

{

 /* Must handle close message */

 if (uMsg == PN_CLOSE)

 {

 /* Inform application that the plug-in has closed */

 PluginProc(INSTANCE_HANDLE, PM_CLOSED, 0, sizeof(PluginName),

PluginName);

 /* Clear PluginProc, allows another instance to be started */

 PluginProc = NULL;

 }

 /* ignore all other notifications that may arrive */

}

/* Shutdown function */

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

14

void XRSAPI xrsPluginDone(void)

{

 /* Nothing to do here! */

}

XRS Event Handling and Control

This chapter deals with specifics on what can be done with plug-ins and how to implement the details.

Start-up Conditions

During and after an xrsPluginStart call, the plug-in can start making calls to the application. Generally,

during start up, the plug-in will retrieve any settings it will use during the life of the plug-in and initialise any

controls with the settings. It could also put the radio device into a particular state for the plug-in to operate in.

During the start-up stage (before xrsPluginStart returns with an instance handle), any calls to the

application must be made with an instance handle (hPlugin) of zero.

Notifications will not be issued until xrsPluginStart returns and in most cases, only are issued when a

setting changes.

Notifications

Notifications fall into several categories:

 Application notifications: Informs the plug-in of any changes to the device’s user interface. These

include disabling (or taking control) of various functions, hiding and

showing of the entire interface and minimisation of the interface.

 Receiver notifications: Informs the plug-in of any changes to the settings of the receiver. These

include reception frequency, demodulation mode, signal level, squelch

control, IF strip functions, audio functions, etc.

 Transmitter notifications: Informs the plug-in of any changes to the settings of the transmitter.

These include input settings, transmission frequency, modulation

parameters, output power, etc.

 Plug-in notifications: Informs the plug-in of any other plug-ins that have been started or

stopped.

 Memory notifications: Informs the plug-in when any changes are made to the receiver’s

frequency memory. These include new, modified or deleted entries, bank

changes, folder changes and file changes.

 DSP notifications: XRS supports DSP functionality including DAC and ADC on both

receiver outputs and transmitter inputs for advanced reception and/or

transmission functionality. Functionality can include modulation and

demodulation, coding and decoding, recording and playback, etc.

Notifications include DSP requests, acknowledgments of transferred data

and DSP state changes.

Commands

Commands fall into several categories similar to notifications:

 Application commands: Commands can be issued to the application to control how the device’s

user interface behaves. These include hiding, showing and minimising the

entire interface. A plug-in can also disable various groups of controls so

the user cannot alter any settings that the plug-in is controlling.

 Receiver commands: Commands can be sent to change any settings that the receiver (and

application) supports. For most notifications that the plug-in receives,

there is an equivalent command to change the setting from the plug-in.

The only exceptions are the signal level and status (including squelch,

scanning and DSP).

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

15

 Transmitter commands: Commands can also be issued to the application to control any aspect of

transmitter operation.

 Plug-in commands: Commands can be sent to the application to obtain a list of all installed

plug-ins and to find out if they are currently running (notifications are

issued to inform all plug-ins if another plug-in is started or stopped).

Plug-ins can also control other plug-ins by starting and/or stopping them.

 Memory commands: A plug-in can issue commands to add, modify and delete entries in the

receiver’s frequency memory. It can also select a different bank or folder

(if the application supports it) and load a different memory file. A plug-in

can also command the application to recall a frequency from memory.

 DSP commands: XRS supports receiver and transmitter DSPs and/or ADC/DACs

independently of each other. If DSP facilities are available on a radio

device, XRS plug-ins can be used for a large variety of functions.

User Interface Control

Taking Control of the Device’s Functions

When a plug-in wishes to take control of specific functions of the device, the plug-in can disable the controls

on the user interface to prevent the user from overriding the plug-ins operation. This same feature also stops

other plug-ins from attempting to control the same functions.

A plug-in has three ways of finding out if it can take control of a device’s function:

 Monitoring the disable status (from the PN_DISABLED notification).

 Obtaining the interface’s disabled status (using the PM_GETSETTINGS command).

 Trying to disable the functions (using the PM_DISABLE command) and checking the return value

from the call.

The user interface will disable the controls associated with the flags set in the PM_DISABLE command and

will block any other plug-ins from attempting to control the disabled features.

Memory Control

XRS has support for comprehensive interaction with the radio device frequency memory. It can recall

frequencies, store, modify and delete frequencies from memory. For radio devices that utilise banks, the

plug-in can select or obtain the current memory bank. Other radio devices may support frequency storage in a

folder system similar to the file system used in most operating systems, plug-ins can read and modify the

folder tree as well as select or obtain the active folder.

Reading from Frequency Memory

The plug-in can read the contents of the memory file by first issuing a PM_GETNEXTMEM command with a

parameter of –1 (this obtains the first memory number) and supplying a MEMORYENTRY buffer to be filled

by the command. The command will return the number of the first used record (and the buffer will be filled

with that record). Repeat the calls to PM_GETNEXTMEM passing the return value from the previous call until

the command returns –1 (no more memory records). The call can also pass NULL for the buffer (in the

lpData parameter) to just obtain a list of used memory records.

If the plug-in just wants the number of records, it can issue a PM_GETNUMMEMS command. The plug-in can

also obtain the contents of a specific memory record by issuing a PM_GETMEM command passing the

memory record number and supplying a MEMORYENTRY buffer to be filled.

To get the application to recall a memory record, the plug-in can issue a PM_RECALLMEM command passing

the record number. The application will recall the settings in the record and appropriate apply the settings to

the receiver. When a memory is recalled, the application will issue a PN_MEMRECALL notification to all

active plug-ins (unless the notification is filtered out with a PNF_MEMORY filter flag).

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

16

Modifying Frequency Memory

To add or modify a memory record, the plug-in can issue a PM_STOREMEM command. If the record doesn’t

exist, a new record is created. If the record does exist, the record will be overwritten with the data supplied

by the command.

If the lpData parameter is NULL, the memory record is deleted.

Whenever a memory record is added, modified or deleted, the application will issue a PN_MEMCHANGE

notification to all running plug-ins. The notification supplies the memory record number and the new

contents of the record in a MEMORYENTRY structure (or NULL if the record was deleted).

File Selection

If the application supports different frequency memory files that can be loaded, the plug-in can obtain the

currently open memory file with the PM_GETMEMFILE command. The plug-in can also issue a

PM_SETMEMFILE command to the application to load a different file. If the application does not support

multiple memory file support, these functions will fail.

When a new file is opened or created, a PN_MEMFILE notification will be sent to all active plug-ins

including the name of the file opened.

Bank Selection

Many receivers store memory records in separate banks and only one bank can be accessed at one time. If the

memory utilises banks, the RADIOMEM_BANKS flag will be set in the dwMemFeatures field of the

RADIODEVCAPS structure. The iNumBanks field specifies the number of banks that the frequency memory

has.

Plug-ins can select the active bank by issuing a PM_SELECTBANK command. When the active bank is

changed, the application issues a PN_MEMBANK notification to all active plug-ins.

Folder Manipulation

An alternative to banks in some receivers, is a tree structure to store memory records into. Like banks, only

one ‘folder’ can be active at one time, and folders can be nested in other folders. Selecting folders operates in

a similar way to changing active directories in a computer’s file system. To select the active folder, the plug-

in can issue a PM_OPENFOLDER command specifying a relative path to the active folder or a full path. Sub-

folders are separated by the back-slash character ‘\’, and folder names can include any character except a

back-slash. Generally, folder names should only include standard ASCII characters ranging from 32 (space)

to 126 (tilde ‘~’). To open an absolute folder path, precede the path with a back-slash.

XRS also allows the plug-in to create, delete and move folders. The commands for these functions are

PM_CREATEFOLDER, PM_DELETEFOLDER and PM_MOVEFOLDER respectively.

To retrieve the folder tree (usually for display and user-navigation purposes), the PM_GETNEXTFOLDER

command has to be used to obtain the next folder in the same level. To get the first sub-folder in the specified

folder, use the PM_GETSUBFOLDER command.

When the active folder changes, the application will issue a PN_MEMFOLDER notification containing the

absolute path to the new active folder.

DSP Control

Analog to Digital Conversion

To be able to perform analog to digital conversion (ADC), the RADIODSP_ADC flag must be set in the

dwDspFeatures field of the DSPCAPS structure which can be accessed from the RADIODEVCAPS

structure. There can be two versions, one for the receiver’s DSP and one for the transmitter’s DSP if either or

both are supported. ADC from the receiver digitises data from the receiver’s IF or demodulator output while

on the transmitter it digitises data from the transmitter’s input.

The capabilities of the ADC are defined by the existence of the RADIODSP_xBIT and the

RADIODSP_xKHZ flags. For each flag specifies the number of bits and sampling rate is supported. The

ADC can possibly also support single and/or two channel (stereo) ADC, specified by the RADIODSP_MONO

and RADIODSP_STEREO flags.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

17

To start ADC, a PMx_DSPADCSTART command has to be issued to the application. The dwParam

parameter has to include three RADIODSP_xxx flags that specify the sampling rate, bits per sample and

number of channels.

Shortly after this command is executed (and assuming a success return value), PNx_DSPINBUFFULL

notifications will be sent to the plug-in containing packets of digitised audio data in PCM format. The plug-in

must use the data or make a copy of the data before returning from the notification (the data is freed after the

plug-in returns from the notification).

To stop ADC, issue a PMx_DSPCLOSE command passing the return value from the PMx_DSPADCSTART

command.

Digital to Analog Conversion

Digital to analog conversion (DAC) support is defined by the presence of the RADIODSP_DAC flag in the

dwDspFeatures field of the DSPCAPS structure for both receivers and transmitters. On receivers, the

DAC data is sent to the audio output while on transmitters, the data is sent to the transmitter’s modulator

input.

The capabilities of the DAC are defined by the same bits as the ADC (it is assumed that if the device

supports both ADC and DAC, the capabilities are same or one is downgraded to the capabilities of the other).

To start DAC, a PMx_DSPDACSTART command as to be sent to the application. The dwParam parameter

has to include three RADIODSP_xxx flags that specify the sampling rate, bits per sample and number of

channels that the plug-in will provide data for.

Immediately after a successful return from the command, the plug-in can start sending digitised audio packets

to the DAC using the PMx_DSPSENDBUF command. The command will return a ‘Buffer ID’ and any

memory allocated for the command can be reused or freed. When the packet has been completely sent to the

DAC, a PNx_DSPSENDBUFDONE notification is sent to the plug-in to let it know that the buffer has been

sent.

When DAC has finished, issue a PMx_DSPCLOSE command passing the return value from the

PMx_DSPDACSTART command.

DSP Programming

For devices that have programmable DSPs (not including fixed program DSPs), plug-ins can create DSP

programs that can be uploaded to the DSP. Typical applications include filtering and decoding/encoding

(depending on whether it is in a receiver or transmitter).

Support for programmable DSPs is defined by the presence of the RADIODSP_DSP flag in the

dwDspFeatures field of the DSPCAPS structure. DSPs are always located between a ADC and a DAC

where digitised audio data (from the ADC) is fed into the DSP, the DSP processes the data and sends it to the

DAC. On receivers, the DSP processes audio data between the demodulator and the audio output. On

transmitters, the DSP processes audio data between the input and the modulator. Depending on the DSP

program, one end of the ADC-DSP-DAC chain may not be used such as in encoding or decoding digital data.

To upload and start a custom DSP program, the plug-in must first check that it supports the DSP in the device

(the code is DSP dependant) by checking the szDspManufacturer and szDspProduct fields in the

DSPCAPS structure. If the plug-in supports the device’s DSP, the plug-in issues a PMx_DSPSTART

command passing the DSP code in the lpData parameter.

DSP programs can receive PNx_DSPREQxxx notifications from the DSP itself, they can send data using the

PMx_DSPSENDBUF and/or PMx_DSPSENDBYTE commands (the xxxBUF commands are generally faster

than the xxxBYTE command) and receive data using the PMx_DSPADDINBUF and/or

PMx_DSPREADBYTE commands.

On some receivers, the DSP supports processing from the IF through to the audio output. If the DSP supports

programming from the IF input, the RADIODSP_IF flag is set in the dwDspFeatures field. Likewise

with all DSP support, the code is device dependent and must be written specifically for the radio device and

DSP.

Also, some DSPs support running of several programs simultaneously. This allows multiple calls to

PMx_DSPSTART to upload and run several programs. Support for this feature is defined by the presence of

the RADIODSP_MULTIPLE flag in the dwDspFeatures field. Each call to PMx_DSPSTART will return a

unique handle that has to be used appropriately in all DSP commands.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

18

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

19

XRS API Reference

Plug-in Functions

xrsPluginInit

Called when the application is started. Use this function to allocate the memory and resources shared by all

instances of your plug-in.

C/C++:

int xrsPluginInit(int iXRSVer, PCHAR lpServerId, PCHAR lpName,

int cbName);

Delphi:

function xrsPluginInit(iXRSVer: Integer; lpServerId, lpName: PChar;

cbName: Integer): Integer;

Parameters

iXRSVer

Informs the plug-in the latest version of XRS the application supports. Any plug-ins that require an XRS

version later than supplied should return a failure (zero) or adapt so only XRS specs supported are used.

 lpServerId

Informs the plug-in of the server ID. The plug-in must validate the ID using the xrsValidateServer

function.

lpName

Points to a buffer to accept the name of the plug-in. A plug-in can supply an empty string (NULL

terminator only) to make the plug-in completely invisible (ie. not shown in any menu, list or from the

PM_GETNEXTPLUGIN command).

cbName

Specifies the size of the buffer supplied at lpName. A plug-in must not put more than cbName bytes in the

lpName buffer (including the NULL terminator).

Return Value

A plug-in can return 0 for failure (ie. do not load or use) or one of the following combinations that define the

level of control the plug-in enjoys:

Bits 0 & 1:

0 = Failure

1 = Doesn’t take control, but can occasionally change various settings.

2 = Takes temporary control, it should disable controls that is overriding.

3 = Takes full control, should hides/minimises/disables panel or appropriate controls.

Bits 2 & 3:

0 = Doesn’t use DSP.

4 = Occasionally uses the DSP, it will have to share with other similar plug-ins.

8 = DSP parallel control, can operate with other plug-ins that also use the DSP.

12 = DSP full control, no other DSP based plug-ins can operate at the same time.

Note: ‘DSP’ represents the DSP facility available on the radio device itself - not a sound card device of

the host computer.

Bit 4:

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

20

Uses a sound device, cannot operate with other similar plug-ins.

Note: The ‘sound device’ is typically a sound card facility of a personal computer.

Bit 5:

Informs the application to start the plug-in immediately. (An ‘auto-start’ plug-in.)

Bit 6:

Informs the application not to show the plug-in in the plug-in list and/or menu but can still be accessed

from the PM_GETNEXTPLUGIN command. (A ‘hidden’ plug-in.)

Bit 7:

Indicates that the plugin window handle will be returned in xrsPluginStart function and allows the XRS

server to manipulate it (for example to embed to the application panel).

The plug-in should check the version information in the iXRSVer parameter to verify that it is compatible

with the API capabilities provided by the application. The low-byte specifies the minor version number, and

next most significant specifies the major version number. For example, for version 1.0 iXRSVer will equal

0x0100.

Next the plug-in must validate the server ID by calling xrsValidateServer with the lpServerId

parameter and if it is valid, the function returns TRUE. If xrsValidateServer returns false, the plug-in

must return zero.

No XRS API calls can take place in either direction until the initialisation completes successfully.

If a plug-in cannot initialise (resource allocation error, unsupported XRS version, or invalid XRS server), it

must return zero.

xrsPluginDone

Called when the application is shutting down but before the plug-in is unloaded. It gives the plug-in a chance

to cancel any outstanding I/O requests, delete threads it created, free memory and perform any other closing

tasks.

C/C++:

void xrsPluginDone(void);

Delphi:

procedure xrsPluginDone;

xrsPluginStart

This is called when the user starts the plug-in from the menu or by a self-starting plug-in (see

xrsPluginInit).

C/C++:

XRSRESULT xrsPluginStart(HWND hAppWnd, LPRADIODEVCAPS lpRadioDevCaps,

 PLUGINPROC lpPluginProc, PDWORD lpFilterFlags);

Delphi:

function xrsPluginStart(hAppWnd: HWND; lpRadioDevCaps: PRadioDevCaps;

 lpPluginProc: TPluginProc; var lpFilterFlags: Longint): TXrsResult;

Parameters

hAppWnd

Specifies the handle of the window that is starting the plug-in. This can be used to identify the device

where multiple devices can start the plug-in.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

21

lpRadioInfo

Points to a RADIODEVCAPS structure that contains the details of the device starting the plug-in.

lpPluginProc

Points to a caller-defined callback function for the plug-in to call, which will issue commands to the

device. A full list of callback commands is defined later under ‘PluginProc’.

lpFilterFlags

Points to a DWORD that the plug-in may change to inform the application of the notifications it does not

wish to receive. By specifying ignored notifications, the performance of the plug-in and application can

be increased. If this value is not changed (or is set to zero), the plug-in will receive all notifications (and

can choose to ignore any notifications it does not need to know about).

The PN_CLOSE, PNR_SCANFINISHED and several PNR/T_DSPxxx notifications cannot be filtered

out.

The filter flags can be changed during a plug-in’s operation by the PM_FILTERFLAGS command.

The filter values defined include:

Filter Description

PNF_ALL Do not receive any notifications (except unmaskable ones)

PNF_NONE Receive all notifications

PNF_DISABLED No PN_DISABLED notifications

PNF_POWER No PN_POWER notifications

PNF_MEMORY No PN_MEMxxx notifications

PNF_PLUGIN No PN_PLUGINxxx notifications

PNF_ALLRX No PNR_xxx notifications

PNF_RXFREQ No PNR_FREQUENCY notifications

PNF_RXMODE No PNR_MODE or PNR_MODEXDATA notifications

PNF_RXEXTOSC No PNR_EXTOSC notifications

PNF_SLEVEL No PNR_SLEVEL, PNR_SQUELCH or PNR_SQUELCHED notifications

PNF_RF No PNR_ATTEN, PNR_PREAMP or PNR_RFINPUT notifications

PNF_IF No PNR_IFSHIFT, PNR_AGC, PNR_IFGAIN, etc. notifications

PNF_RXAUDIO No PNR_DEMODSIGNAL, PNR_VOLUME, PNR_MUTE, PNR_BALANCE,

etc. notifications

PNF_SCANNER No PNR_SCANNER notifications

PNF_RXDSP No PNR_DSPxxx notifications

PNF_ALLTX No PNT_xxx notifications

PNF_TXFREQ No PNT_FREQUENCY notifications

PNF_TXMODE No PNT_MODE or PNT_MODSRC notifications

PNF_TXEXTOSC No PNT_EXTOSC notifications

PNF_TXAUDIO No PNT_AUDIOPROC, PNT_AUDIOFILTER or PNT_ANTIVOX notifications

PNF_TXSETTINGS No PNT_RFPOWER, PNT_SELCALL, PNT_XMTCTL, etc. notifications

PNF_MEASUREMENT No PNT_MEASUREMENT notifications

PNF_TXDSP No PNT_DSPxxx notifications

Return Value

If the plug-in starts successfully, the return value must be a process unique value defined by the plug-in

(other than the failure code). Typically, the return value is a pointer to a unique memory location for each

instance of a device. The plug-in can use hAppWnd as a device unique value.

If the plug-in fails, the plug-in must return -1 (or INVALID_HANDLE_VALUE in Win32).

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

22

Remarks

The caller can only call xrsPluginStart once for each instance, and after a PM_CLOSED callback

command is received for the plug-in instance.

xrsPluginNotify

This is called every time a setting is changed in the associated device.

C/C++:

void xrsPluginNotify(HWND hAppWnd, int uMsg, DWORD dwData,

 int cbData, LPVOID lpData);

Delphi:

procedure xrsPluginNotify(hAppWnd: HWND; uMsg: Integer; dwData: Longint;

 cbData: Integer; lpData: Pointer);

Parameters

hAppWnd

Specifies the handle of the window of the device instance that is notifying the plug-in. This is the same as

hAppWnd used in the xrsPluginStart function.

uMsg

The ID of the notification message (see Remarks below for all supported messages).

dwData

A 32-bit value associated with uMsg.

cbData

Size of the buffer pointed to lpData that is associated with uMsg.

lpData

A pointer to a buffer (that should not be modified) associated with uMsg. This can be NULL if this is not

used.

Remarks

The notification messages that can be issued to a plug-in (from an application) include:

uMsg Value
(hex)

dwData lpData Page
No.

PN_DISABLED 0000 Global disabled state of application interface NULL 97

PN_POWER 0100 Power state (0 = off, 1 = on) NULL 100

PN_MEMRECALL 0200 Memory number (0 – dwMaxMemories) NULL 99

PN_MEMCHANGE 0201 Memory number Ptr to MEMORYENTRY 98

PN_MEMFILE 0202 Not used Ptr to file name 98

PN_MEMBANK 0203 Bank number NULL 98

PN_MEMFOLDER 0204 Not used Ptr to folder path 98

PN_PLUGINSTARTED 0300 Plug-in type (returned from xrsInit) Ptr to name of plug-in 99

PN_PLUGINSTOPPED 0301 Plug-in type Ptr to name of plug-in 99

Receiver Notifications

PNR_FREQUENCY 0800 Receiver frequency in Hz NULL 104

PNR_TRUNKFREQ 0801 Trunking system control frequency in Hz NULL 117

PNR_TRACKID 0802 Radio ID to track in a trunking system. NULL 117

PNR_TRUNKID 0803 Decoded radio ID from control frequency. NULL 117

PNR_MODE 0900 RADIOMODE_xxx NULL 111

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

23

PNR_MODEXDATA 0901 Depends on the mode NULL 112

PNR_EXTOSC 0A00 Zero = internal, non-zero = external NULL 103

PNR_SLEVEL 0B00 Signal level NULL 116

PNR_SQUELCH 0B01
Enabled squelch settings

(RXSQUELCH_xxx flags)
Ptr to SQUELCHSETTINGS 116

PNR_SQUELCHED 0B02 Zero = mute off, non-zero = mute on NULL 117

PNR_SLEVELDBM 0B05 Signal level in dBm NULL 116

PNR_RFINPUT 0C00 RF input number (1 to iNumRfInputs) NULL 114

PNR_ATTEN 0C01 Atten level (0 to iMaxAtten) NULL 105

PNR_PREAMP 0C02 Preamp level (0 to iMaxPreamp) NULL 114

PNR_BANDWIDTH 0D00
IF bandwidth in Hz

(iMinIfBw to iMaxIfBw)

NULL
106

PNR_AGC 0D01 AGC settings NULL 104

PNR_IFGAIN 0D02 IF gain level (iMinIfGain to iMaxIfGain) NULL 110

PNR_IFSHIFT 0D03 IF shift in Hz (up to +/- iMaxIfShift) NULL 110

PNR_AFC 0D04 Zero = off, non-zero = on NULL 104

PNR_VOLUME 0E00 Volume level (0 to iMaxVolume) NULL 117

PNR_MUTE 0E01 Zero = off, non-zero = on NULL 113

PNR_BALANCE 0E02 Audio balance (to +/- iBalanceRange) NULL 105

PNR_MONO 0E03 0 = mono, 1 = stereo, -1 = forced mono NULL 112

PNR_LOUD 0E04 Zero = off, non-zero = on NULL 111

PNR_AUDIOSRC 0E05 RXAUDIOSRC_xxx NULL 105

PNR_AUDIOFILTER 0E06 Filter type Ptr to Filter settings 101

PNR_DEMODSIGNAL 0E07 Demodulator point Ptr to
DEMODSIGNALDATA

106

PNR_RECORDING 0E08 Signal type Ptr to

RECORDINGPARAMS

114

PNR_SIGNALPARAMS 0E09 Not used Ptr to SIGNAL_PARAMS 115

PNR_NOISEBLANKER 0E10 0 = off, -1 = auto, + = threshold NULL 113

PNR_NOTCH 0E11 0 = off, -1 = auto, + = frequency in Hz NULL 114

PNR_NOISEREDUCT 0E12 0 = off, + = type (iMaxNoiseReduction) NULL 113

PNR_DFANGLE 0E14 Angle and offset in 0.01deg steps Ptr to

DF_ANGLE_STRUCT

107

PNR_GPSPOS 0E15 Not used Ptr to GPS_POSITION 110

PNR_DFRPS 0E16 RPS NULL 109

PNR_DFSTART 0E17 0 = off, non-zero = DF enabled NULL 109

PNR_DFCOMPASS 0E18 0 = disable, non-zero = enable compass NULL 108

PNR_DFAVGENABLE 0E19 0 = disable, non-zero = enable averaging NULL 108

PNR_DFAVGLENGTH 0E1A AVG length NULL 108

PNR_DFANGLEMODE 0E1B 0 = -180 to 180, non-zero = 0 to 360 NULL 107

PNR_DFCOMPASSOFFSET 0E1C Compass offset in 0.01deg steps NULL 108

PNR_DFCOMPASSPITCH 0E1D Compass pitch in 0.01deg steps NULL 109

PNR_DFCOMPASSROLL 0E1E Compass roll in 0.01deg steps NULL 109

PNR_SCANNER 0F00 0 = stopped, 1 = scanning, 2 = paused NULL 115

PNR_CHANNELSCANNE

D

0F01 Not used Ptr to

CHANNEL_SCANNED

106

PNR_DSP 1000 0 = off, 1 = ADC, 2 = DAC, 3 = other NULL 101

PNR_DSPINPUT 1001 Input number (0 – iNumRxDspInputs-1) NULL 102

Transmitter Notifications

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

24

PNT_FREQUENCY 1400 Transmitter frequency in Hz NULL 104

PNT_MODE 1500 RADIOMODE_xxx NULL 119

PNT_MODSRC 1501 TXMODSRC_xxx NULL 120

PNT_EXTOSC 1600 Zero = internal, non-zero = external NULL 103

PNT_AUDIOFILTER 1700 Filter number (0 = none) Ptr to filter settings 101

PNT_AUDIOPROC 1701 Input processing type Ptr to TXAUDIOPROC 118

PNT_ANTIVOX 1702 Anti-vox gain NULL 118

PNT_TX 1800 Zero = not Txing, non-zero = is Txing NULL 122

PNT_RFPOWER 1801 Transmitter power (0 to iMaxTxPower) NULL 121

PNT_SELCALL 1802 Selective calling Ptr to settings 121

PNT_XMTCTL 1803 Transmitter initiation control NULL 123

PNT_MEASUREMENT 1900 Measurement type Ptr to reading 119

PNT_DSP 1A00 0 = off, 1 = ADC, 2 = DAC, 3 = other NULL 101

PNT_DSPINPUT 1A01 Input number (0 – iNumTxDspInputs-1) NULL 102

The following messages cannot be filtered

PN_CLOSE 4000 Not used NULL 97

PN_MINIMIZED 4001 0 = normal, 1 = minimised NULL 99

PN_VISIBLE 4002 0 = invisible (hidden), 1 = visible NULL 100

PN_CAPABILITIES 4005 Not used Ptr to RADIODEVCAPS 97

PN_SERVERLISTEN 400B Not used Ptr to CLIENTSERVER 100

PNR_SCANFINISHED 4010 Index of last frequency Ptr to signal levels 115

PNR_DSPINBUFFULL 4020 Buffer ID Ptr to buffer 102

PNR_DSPSENDBUFDONE 4021 Buffer ID NULL 103

PNR_DSPREQUEST 4022 Request code (app defined) NULL 103

PNR_DSPREQREAD 4023 Amount of data requested NULL 102

PNR_DSPREQSEND 4024 Amount of data requested NULL 103

PNT_DSPINBUFFULL 4030 Buffer ID Ptr to buffer 102

PNT_DSPSENDBUFDONE 4031 Buffer ID NULL 103

PNT_DSPREQUEST 4032 Request code (app defined) NULL 103

PNT_DSPREQREAD 4033 Amount of data requested NULL 102

PNT_DSPREQSEND 4034 Amount of data requested NULL 103

XRS Functions

xrsCopyRadioDevCaps

This function allocates memory and copies the supplied RADIODEVCAPS structure into the allocated

memory for a local copy of the radio device capabilities. This is typically used in the xrsPluginStart

function.

C/C++:

LPRADIODEVCAPS xrsCopyRadioDevCaps(LPRADIODEVCAPS DevCaps);

Delphi:

function xrsCopyRadioDevCaps(DevCaps: PRadioDevCaps): PRadioDevCaps;

Parameters

DevCaps

Pointer to a RADIODEVCAPS structure, supplied in the xrsPluginStart function.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

25

Return Value

Points to an allocated copy of the supplied RADIODEVCAPS structure. If memory could not be allocated, it

returns NULL.

xrsFreeRadioDevCaps

This function frees memory allocated by xrsCopyRadioDevCaps.

C/C++:

void xrsFreeRadioDevCaps(LPRADIODEVCAPS DevCaps);

Delphi:

procedure xrsFreeRadioDevCaps(DevCaps: PRadioDevCaps);

Parameters

DevCaps

Points to a RADIODEVCAPS structure that was returned from xrsCopyRadioDevCaps.

xrsValidateServer

This function is provided for the plug-in to validate the server.

C/C++:

BOOL xrsValidateServer(PCHAR lpServerId);

Delphi:

function xrsValidateServer(lpServerId: PChar): Bool;

Parameters

lpServerId

The application’s server ID passed in the xrsPluginInit call.

It is a text string in the format:

 XRS-XkQSCGjQ-cccccc-nnnn

where nnnn represents the server’s OEM ID.

Return Value

Non-zero if the server is valid, zero if the server is not.

PluginProc

This is an application-defined callback procedure for plug-ins to control various aspects of the application.

C/C++:

typedef DWORD (CALLBACK* PLUGINPROC)(DWORD, int, DWORD, int, LPVOID);

Delphi:

type

TPluginProc = function (hPlugin: Longint; uMsg: Integer;

 dwParam: Longint; cbData: Integer; lpData: Pointer): Longint;

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

26

Parameters

hPlugin

A unique plug-in instance handle returned by xrsPluginStart so the application knows which plug-

in is issuing the callback.

uMsg

The ID of the command for the application to process. These are defined under ‘Remarks’.

dwParam

A 32-bit value associated with the uMsg command.

cbData

Size of the buffer pointed to lpData that is associated with uMsg.

lpData

A pointer to a buffer associated with uMsg. This can be NULL if not used. The buffer must have read and

write access (regardless of whether the plug-in is expecting to use the data or not). The only exception is

PM_CLOSED.

Return Value

If not successful, 0x80000000 (PLUGIN_CB_FAIL) is returned, otherwise the value depends on the

command issued (see the table following).

Remarks

A full description for the commands that can be issued are described later in the section called ‘Commands’.

A summary of the commands which can be issued from a plug-in to the calling application include:

uMsg dwData lpData
Success return

value
Page
no.

PM_CLOSED Not used Name of plug-in 0 59

PM_DISABLE PD_xxx NULL 0 60

PM_GETSETTINGS PN_xxx Depends on notification Setting 64

PM_FILTERFLAGS PNF_xxx NULL 0 61

PM_MINIMIZE Zero = restore, non-zero = minimise NULL 0 65

PM_VISIBLE Zero = hide, non-zero = show NULL 0 68

PM_CAPABILITIES Not used Ptr to RADIODEVCAPS

PM_POWER Zero = off, non-zero = on NULL 0 66

Receiver Commands

PMR_FREQUENCY
The receiver’s frequency in Hz

(changes the display frequency)
NULL 0 74

PMR_FREQ
The receiver’s frequency in Hz (does

not change the display frequency)
NULL 0 74

PMR_TRUNKFREQ The trunking control frequency in Hz NULL 0 90

PMR_TRACKID The radio ID to track NULL 0 90

PMR_EXTOSC Zero = internal, Non-zero = external NULL 0 73

PMR_MODE RADIOMODE_xxx NULL 0 84

PMR_MODEXDATA Depends on mode NULL 0 85

PMR_SQUELCH RXSQUELCH_xxx Ptr to SQUELCHSETTINGS 0 89

PMR_RFINPUT RF input number (1 to iNumRfInputs) NULL 0 88

PMR_PREAMP
RF pre-amplification level

(0 to iMaxPreamp)
NULL 0 87

PMR_ATTEN
RF attenuation level

(0 to iMaxAtten)
NULL 0 76

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

27

PMR_BANDWIDTH IF bandwidth in Hz NULL 0 77

PMR_AGC AGC settings NULL 0 75

PMR_IFGAIN
IF gain level

(iMaxIfGain to iMaxIfGain)
NULL 0 78

PMR_IFSHIFT
IF shift in current mode

(up to +/- iMaxIfShift)

Ptr to RADIOMODE_xxx if

to apply to other mode
0 83

PMR_AFC Zero = off, non-zero = on NULL 0 75

PMR_VOLUME Volume level (0 to iMaxVolume) NULL 0 90

PMR_MUTE Zero = off, non-zero = on NULL 0 86

PMR_BALANCE Left/right balance (+/-iBalanceRange) NULL 0 77

PMR_MONO
Zero = stereo, non-zero = forced

mono
NULL 0 84

PMR_LOUD Zero = off, non-zero = on NULL 0 83

PMR_AUDIOSRC RXAUDIOSRC_xxx NULL 0 76

PMR_AUDIOFILTER Filter type Filter settings 0 69

PMR_NOISEBLANKER 0 = off, -1 = auto, + = threshold NULL 0 86

PMR_NOTCH 0 = off, -1 = auto, + = frequency in Hz NULL 0 87

PMR_NOISEREDUCT
0 = off, + = type

(1 to iMaxNoiseReduction)
NULL 0 87

PMR_BLOCKSCAN
High word = squelch (-1 = not used)

Low word = scan rate (f/s)
Pointer to frequencies 0 78

PMR_STOPSCAN Not used
Optional pointer to receive

signal levels
Last index 90

PMR_DSPADCSTART Rate, bits & chnls (RADIODSP_xxx) NULL DSP handle 70

PMR_DSPDACSTART Rate, bits & chnls (RADIODSP_xxx) NULL DSP handle 71

PMR_DSPSTART Not used Pointer to DSP code DSP handle 73

PMR_DSPCLOSE DSP handle NULL 0 71

PMR_DSPSENDBUF DSP handle Pointer to buffer to send Buffer ID 72

PMR_DSPADDINBUF DSP handle NULL (cbSize = buffer size) Buffer ID 70

PMR_DSPSENDBYTE DSP handle
Pointer to data to send to

DSP
Number of bytes

sent
73

PMR_DSPREADBYTE DSP handle
Pointer to buffer to receive

data from DSP

Number of bytes

sent
72

PMR_DSPINPUT
DSP input number

(0 to iNumRxDspInputs)
NULL 0 72

PMR_DFANGLE
Angle and offset in 0.01deg steps Ptr to

DF_ANGLE_STRUCT
0 79

PMR_DFANGLEMODE 0 = -180 to 180, non-zero = 0 to 360 NULL 0 79

PMR_DFAVGENABLE
0 = disable, non-zero = enable

averaging

NULL
0 79

PMR_DFCOMPASS
0 = disable, non-zero = enable

compass

NULL
0 80

PMR_DFCOMPASSOFFSET Compass offset in 0.01deg steps NULL 0 80

PMR_DFCOMPASSPITCH Compass pitch in 0.01deg steps NULL 0 81

PMR_DFCOMPASSROLL Compass roll in 0.01deg steps NULL 0 81

PMR_DFRPS RPS NULL 0 81

PMR_DFSTART 0 = off, non-zero = DF enabled NULL 0 82

PMR_GPSPOS Not used Ptr to GPS_POSITION 0 82

PMR_RECORDING
Signal type Ptr to

RECORDINGPARAMS
0 88

PMR_SIGNALPARAMS Not used Ptr to SIGNAL_PARAMS 0 89

Transmitter Commands

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

28

PMT_FREQUENCY
The transmitter’s frequency in Hz

(changes the display frequency)
NULL 0 74

PMT_FREQ
The transmitter’s frequency in Hz (does

not change the display frequency)
NULL 0 74

PMT_EXTOSC Zero = internal, Non-zero = external NULL 0 73

PMT_MODE RADIOMODE_xxx Pointer to MODPARAMS 0 92

PMT_MODSRC Audio input source (TXMODSRC_xxx) NULL 0 93

PMT_AUDIOFILTER Filter type Pointer to filter settings 0 69

PMT_AUDIOPROC Processing flags Pointer to TXAUDIOPROC 0 92

PMT_ANTIVOX Anti-vox gain (0 to iMaxAntiVox) NULL 0 91

PMT_RFPOWER Transmitter power (0 to iMaxTxPower) NULL 0 94

PMT_SELCALL Selective calling Pointer to settings 0 94

PMT_TX
Zero = not transmitting,

non-zero = transmitting
NULL 0 96

PMT_XMTCTL Transmitter initiation & release time NULL 0 96

PMT_DSPADCSTART Rate, bits & chnls (RADIODSP_xxx) NULL 0 70

PMT_DSPDACSTART Rate, bits & chnls (RADIODSP_xxx) NULL 0 71

PMT_DSPSTART Not used Pointer to DSP code 0 73

PMT_DSPCLOSE Not used NULL 0 71

PMT_DSPSENDBUF Not used Pointer to buffer to send Buffer ID 72

PMT_DSPADDINBUF Not used NULL (cbSize = buffer size) Buffer ID 70

PMT_DSPSENDBYTE Byte to send if lpData not NULL
Optional pointer to data to

send to DSP

Number of bytes

sent
73

PMT_DSPREADBYTE Not used
Optional pointer to buffer to

receive data from DSP

Number of bytes

read
72

PMT_DSPINPUT
DSP input number

(0 to iNumTxDspInputs)
NULL 0 72

Memory Commands

PM_RECALLMEM Memory no. (0 to dwMaxMemories) NULL 0 66

PM_STOREMEM Memory number Ptr to MEMORYENTRY 0 68

PM_GETMEM Memory number Ptr to MEMORYENTRY 0 62

PM_GETNUMMEMS Not used NULL
No. of memory

records
64

PM_GETNEXTMEM Memory number (-1 = first) NULL Next mem no. 63

PM_GETMEMFILE Not used
Pointer to buffer to receive

file name
0 62

PM_SETMEMFILE Not used Pointer to file name 0 67

PM_SELECTBANK Bank number (0 to iNumBanks) NULL 0 67

PM_OPENFOLDER Not used Pointer to folder path 0 65

PM_GETNEXTFOLDER Not used Pointer to folder path Length of path 62

PM_GETSUBFOLDER Not used Pointer to folder path Length of path 64

PM_CREATEFOLDER Not used Pointer to new folder path 0 60

PM_DELETEFOLDER Not used Pointer to folder path 0 60

PM_MOVEFOLDER Not used New destination path 0 65

Plug-in Commands

PM_GETNEXTPLUGIN Not used Pointer to buffer for name Plug-in type 63

PM_STARTPLUGIN Not used Pointer to plug-in name
0: started,

1: already started
67

PM_STOPPLUGIN Not used Pointer to plug-in name
0: stopped,
1: not running

68

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

29

XRS Structures

AGCEXCAPS

The AGCEXCAPS structure is used when the receiver supports the setting extended AGC parameters. Support

for extended AGC parameters is specified by the existence of the RADIOTXCAPS_ADJAGC flag in the

dwRxFeatures field of the RADIODEVCAPS structure. The lpAgcExCaps field refers to this structure (if it is

not NULL).

The AGCEXCAPS structure specifies the minimum and maximum values allowable for each part of the AGC

parameters.

C/C++:

typedef struct _AGCEXCAPS {

int iMinAgcAttack;

int iMaxAgcAttack;

int iMinAgcHold;

int iMaxAgcHold;

int iMinAgcDecay;

int iMaxAgcDecay;

} AGCEXCAPS, FAR *LPAGCEXCAPS;

Delphi:

type

PAgcExCaps = ^TAgcExCaps;

TAgcExCaps = packed record

 iMinAgcAttack: Integer;

 iMaxAgcAttack: Integer;

 iMinAgcHold: Integer;

 iMaxAgcHold: Integer;

 iMinAgcDecay: Integer;

 iMaxAgcDecay: Integer;

 end;

Fields

iMinAgcAttack

Specifies the minimum AGC attack time in 1ms intervals.

iMaxAgcAttack

Specifies the maximum AGC attack time. If this (and iMinAgcAttack) is zero, then the receiver does not

support adjustable AGC attack times.

iMinAgcHold

Specifies the minimum AGC hold time in 1ms intervals.

iMaxAgcHold

Specifies the maximum AGC hold time. If this (and iMinAgcHold) is zero, then the receiver does not

support adjustable AGC hold times.

iMinAgcDecay

Specifies the minimum AGC decay time in 1ms intervals.

iMaxAgcDecay

Specifies the maximum AGC decay time. If this (and iMinAgcDecay) is zero, then the receiver does not

support adjustable AGC decay times.

AGCEXPARAMS

The AGCEXPARAMS structure is used to specify extended AGC parameters in the PMR_AGC command and

PNR_AGC notification.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

30

C/C++:

typedef struct _AGCEXPARAMS {

DWORD dwAgcAttack;

DWORD dwAgcHold;

DWORD dwAgcDecay;

} AGCEXPARAMS, FAR *LPAGCEXPARAMS;

Delphi:

type

PAgcExParams = ^TAgcExParams;

TAgcExParams = record

 dwAgcAttack: Longint;

 dwAgcHold: Longint;

 dwAgcDecay: Longint;

 end;

Fields

dwAgcAttack

Specifies the AGC attack time in 1ms intervals.

dwAgcHold

Specifies the AGC hold time in 1ms intervals.

dwAgcDecay

Specifies the AGC decay time in 1ms intervals.

CHANNEL_SCANNED
typedef struct {

 DWORD MemoryIndex;

 BOOL LiveSignal;

 } CHANNEL_SCANNED;

Fields:

MemoryIndex

Index of a memory item being scanned.

LiveSignal

If zero, the channel is not live. Otherwise the channel is not live.

CLIENTSERVER

This structure is used to make the XRS server application to accept incoming connections or to connect to a

remote listening server.

C/C++:

typedef struct {

 char RemoteAddr[128];

 unsigned short int Port;

} CLIENTSERVER;

Fields:

RemoteAddr

Address of a remote computer to connect. Required in PM_CONNECTREMOTE message.

Port

In PM_CONNECTREMOTE command, the remote address to connect.

In PM_SERVERLISTEN, the local port to accept incoming connections.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

31

DEMODDEF

The DEMODDEF structure describes a supported demodulation mode and its associated attributes. This is

included as part of the RADIODEVCAPS structure passed in the xrsPluginStart function.

C/C++:

typedef struct _DEMODDEF {

int iMode;

int iMaxScanRate;

DWORD dwMinIfBw;

DWORD dwMaxIfBw;

int iIfBwStep;

DWORD dwMaxIfShift;

DWORD dwMaxExData;

} DEMODDEF, FAR *LPDEMODDEF;

Delphi:

type

PDemodDef = ^TDemodDef;

 TDemodDef = record

 iMode: Integer;

 iMaxScanRate: Integer;

 dwMinIfBw: Longint;

 dwMaxIfBw: Longint;

 iIfBwStep: Integer;

 dwMaxIfShift: Longint;

 dwMaxExData: Longint;

 end;

Fields

iMode

Specifies the mode (RADIOMODE_xxx). A mode can be specified more than once if each mode has a

different fixed IF bandwidth (where dwMinIfBw is –1). This value is used in the PMR_MODE command.

iMaxScanRate

Specifies the maximum scanning rate for this mode.

dwMinIfBw

Specifies the minimum IF bandwidth that can be set in this mode in Hz. If it is –1, the bandwidth is fixed

and cannot be adjusted with the PMR_BANDWIDTH command.

dwMaxIfBw

If dwMinIfBw is positive (or zero), this specifies the maximum IF bandwidth for this mode in Hz. If

dwMinIfBw is –1, this specifies the IF bandwidth for this mode.

iIfBwStep

If the IF bandwidth is adjustable for the mode, this specifies the bandwidth adjustment granularity in Hz.

dwMaxIfShift

If the mode supports adjustable IF shift, this value specifies the maximum shift range (+ or -) from the

centre in Hz. If the mode does not support IF shift, this is set to zero.

dwMaxExData

Most modes have an extended attribute that can be set. This parameter specifies the maximum value that

can be set in the PMR_MODEXDATA command.

In CW, the extended data controls the BFO offset. This field specifies the maximum BFO range, and is

zero if it is not supported.

In FM modes, the extended data controls with audio base-band width in Hz. This field specifies the

maximum base-band width or is zero if it is not adjustable.

For all other modes, this field is reserved.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

32

DEMODSIGNALDATA

The DEMODSIGNALDATA structure is used to pass the samples from a digital demodulator point to a

plug-in through the PNR_DEMODSIGNAL message. The XRS server receives the samples from a

demodulator plug-in using the same structure and dispatches it to all other plug-ins.

C/C++:
typedef struct _DEMODSIGNALDATA {

 int iSamplingRate;

 int iBitsPerSample;

 int iNumChannels;

 int iNumSamplesSets;

 BYTE Samples[1];

 } DEMODSIGNALDATA, FAR *LPDEMODSIGNALDATA;

Delphi:
 type

 PDemodSignalData = ^TDemodSignalData;

 TDemodSignalData = record

 iSamplingRate: Integer;

 iBitsPerSample: Integer;

 iNumChannels: Integer;

 iNumSamplesSets: Integer;

 Samples: array [0..0] of Char;

 end;

Fields:

iSamplingRate

Specifies the sampling rate corresponding to the samples in the structure.

iBitsPerSample

Specifies the size of each sample stored in the structure in bits. It must be a multiple of 8.

iNumChannels

Specifies the number of channels for which the samples are interlaced in the structure.

iNumSamplesSets

Specifies the number of sets of samples contained in the structure. Such a set contains one sample for

each channel.

Samples

The actual samples contained in the structure. The total size of this field is given by:

 iNumSamplesSets * iNumChannels * iBitsPerSample / 8

DF_ANGLE_STRUCT

This structure contains measured direction of the signal (sent by DF demodulator).

C/C++:

typedef struct

{

 int AverageBearing; //*100

 int StandardDeviation; //*100

 int QualityFactor;

} DF_ANGLE_STRUCT;

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

33

Fields:

AveragedBearing

Measured signal angle in 0.01 degree steps

StandardDeviation

Standard deviation of measured angles

Quality factor

Quality factor of measured values

DSPCAPS

The DSPCAPS structure is used to specify the DSP used in the receiver and/or transmitter and its capabilities

in the device. The receiver’s DSP capabilities are referred from the lpRxDspCaps field and the transmitter’s

from the lpTxDspCaps field of the RADIODEVCAPS structure.

C/C++:

typedef struct _DSPCAPS {

CHAR szDspManufacturer[32];

CHAR szDspProduct[32];

DWORD dwDspFeatures;

int iNumDspInputs;

int iCodeWordSize;

int iDataWordSize;

int iExtWordSize;

DWORD dwCodeSize;

DWORD dwDataSize;

DWORD dwExtSize;

} DSPCAPS, FAR *LPDSPCAPS;

Delphi:

type

 PDspCaps = ^TDspCaps;

 TDspCaps = record

 szDspManufacturer: array [0..31] of Char;

 szDspProduct: array [0..31] of Char;

 dwDspFeatures: Longint;

 iNumDspInputs: Integer;

 iCodeWordSize: Integer;

 iDataWordSize: Integer;

 iExtWordSize: Integer;

 dwCodeSize: Longint;

 dwDataSize: Longint;

 dwExtSize: Longint;

 end;

Fields

szDspManufacturer

Specifies the name of the manufacturer who made the device’s DSP (or ADC/DAC if a DSP doesn’t

exist). For ADCs and/or DACs, this field is optional (as they cannot be programmed).

szDspProduct

Specifies the product name of the device’s DSP (or ADC/DAC if a DSP doesn’t exist). For ADCs and/or

DACs, this field is optional (as they cannot be programmed).

For plug-ins that provide DSP programs, this field must be checked as each product is generally unique in

its hardware implementation.

dwDspFeatures

Specifies a range of flags that specify what the DSP, ADC and/or DACs support and which of these are

supported:

RADIODSP_ADC supports analog to digital conversion (recording)

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

34

RADIODSP_DAC supports digital to analog conversion (playback)

RADIODSP_DSP supports DSP functionality (programmable)

RADIODSP_AUDIO supports audio DSP functionality

RADIODSP_IF supports IF DSP functionality

RADIODSP_MULTIPLE supports multiple DSP operations

The following only apply to digital recording and playback (RADIODSP_ADC and RADIODSP_DAC):

RADIODSP_8BIT supports 8 bit sampling

RADIODSP_16BIT supports 16 bit sampling

RADIODSP_24BIT supports 24 bit sampling

RADIODSP_32BIT supports 32 bit sampling

RADIODSP_8KHZ supports 8 kHz sampling rate

RADIODSP_11KHZ supports 11.025 kHz

RADIODSP_16KHZ supports 16 kHz

RADIODSP_22KHZ supports 22.05 kHz

RADIODSP_32KHZ supports 32 kHz

RADIODSP_44KHZ supports 44.1 kHz

RADIODSP_48KHZ supports 48 kHz

RADIODSP_64KHZ supports 64 kHz

RADIODSP_96KHZ supports 96 kHz

RADIODSP_MONO supports single channel sampling

RADIODSP_STEREO supports two channel sampling

iNumDspInputs

Specifies the number of selectable inputs to the ADC and/or DSP.

iCodeWordSize

Specifies the number of bits per word in program memory on the DSP.

iDataWordSize

Specifies the number of bits per word in data memory on the DSP.

iExtWordSize

Specifies the number of bits per word in external memory used by the DSP.

dwCodeSize

Specifies how many words are available in program memory on the DSP.

dwDataSize

Specifies how many words are available in data memory on the DSP.

dwExtSize

Specifies how many words are available in external memory for the DSP.

FREQRANGE

The FREQRANGE structure describes a support frequency range (or band) and any associated attributes of the

frequency for a radio device. This is included as part of the RADIODEVCAPS structure passed in the

xrsPluginStart function.

C/C++:

typedef struct _FREQRANGE {

DWORD dwMinFreqkHz;

DWORD dwMaxFreqkHz;

int iRfInputs;

} FREQRANGE, FAR *LPFREQRANGE;

Delphi:

type

 PFreqRange = ^TFreqRange;

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

35

 TFreqRange = record

 dwMinFreqkHz: Longint;

 dwMaxFreqkHz: Longint;

 iRfInputs: Integer;

 end;

Fields

dwMinFreqkHz

Specifies the minimum tunable frequency for this range in kHz.

dwMaxFreqkHz

Specifies the maximum tunable frequency for this range in kHz.

iRfInputs

An array of bits (bit 0 = RF input #1) that specifies which RF input(s) can be used to receive signals

within this range.

This field is not used for transmitter bands.

GPS_POSITION

This structure contains measured GPS coordinates.

C/C++:

typedef struct

{

 double Longitude;

 double Latitude;

 double Altitude;

 FILETIME TimeStamp;

} GPS_POSITION;

Fields:

Longitude

GPS Longitude

Latitude

GPS Latitude

Altitude

GPS Altitude

TimeStamp

GPS time

GRAPHEQCAPS

The GRAPHEQCAPS structure is used to specify the capabilities of a graphic equaliser if supported on a

receiver and/or transmitter. It is accessed from the lpGraphEqCaps field of the RADIODEVCAPS structure.

C/C++:

typedef struct _GRAPHEQCAPS {

 int iLevelRange;

 int iLevelStep;

 int iNumFreqs;

 int iFreq[1];

} GRAPHEQCAPS, FAR *LPGRAPHEQCAPS;

Delphi:

type

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

36

 PGraphEqCaps = ^TGraphEqCaps;

 TGraphEqCaps = record

 iLevelRange: Integer;

 iLevelStep: Integer;

 iNumFreqs: Integer;

 iFreq: array [0..0] of Integer;

 end;

Fields

iLevelRange

Specifies the maximum adjustment range (boost and cut) of each supported frequency.

If the RADIOCAL_EQUALIZER flag is specified in the dwCalibrated field of the RADIODEVCAPS

structure, then this value is a multiple of 0.1 dB.

iLevelStep

Specifies the granularity of the level adjustment.

iNumFreqs

Specifies the number of adjustment frequencies.

iFreq

Specifies an array of centre frequencies (in Hz) that can be adjusted.

MEMORYENTRY

The MEMORYENTRY structure is used for transferring memory information between an application and a

plug-in.

C/C++:

typedef struct _TXSCHEDULE {

DWORD dwDays; // bit 0 = Sunday .. bit 6 = Saturday

DWORD dwStartTime; // in seconds from midnight

DWORD dwStopTime;

} TXSCHEDULE, FAR *LPTXSCHEDULE;

typedef struct _MEMORYENTRY {

DWORD cbSize;

CHAR szName[64];

DWORD dwFrequency;

DWORD dwStepSize;

DWORD dwMode;

DWORD dwModeExData;

DWORD dwSquelch;

DWORD dwRfInput;

DWORD dwAtten;

DWORD dwPreamp;

DWORD dwBandwidth;

DWORD dwAgc;

DWORD dwIfGain;

DWORD dwIfShift;

DWORD dwAfc;

DWORD dwNumHits;

DWORD dwLastSLevel;

DWORD dwMaxSLevel;

DWORD dwNumSchedules;

DWORD dwScheduleOffset;

DWORD dwGroups;

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

37

DATE dtStored;

DATE dtModified;

DATE dtRecalled;

DWORD fLockout;

CHAR szCallsign[32];

CHAR szComments[256];

} MEMORYENTRY, FAR *LPMEMORYENTRY;

Delphi:

type

PTxSchedule = ^TTxSchedule;

TTxSchedule = record

 dwDays: Longint;

 dwStartTime: Longint;

 dwStopTime: Longint;

end;

PMemoryEntry = ^TMemoryEntry;

TMemoryEntry = record

 cbSize: Longint;

 szName: array [0..63] of Char;

 dwFrequency: Longint;

 dwStepSize: Longint;

 dwMode: Longint;

 dwModeExData: Longint;

 dwSquelch: Longint;

 dwRfInput: Longint;

 dwAtten: Longint;

 dwPreamp: Longint;

 dwBandwidth: Longint;

 dwAgc: Longint;

 dwIfGain: Longint;

 dwIfShift: Longint;

 dwAfc: Longint;

 dwNumHits: Longint;

 dwLastSLevel: Longint;

 dwMaxSLevel: Longint;

 dwNumSchedules: Longint;

 dwScheduleOffset: Longint;

 dwGroups: Longint;

 dtStored: TDateTime;

 dtModified: TDateTime;

 dtRecalled: TDateTime;

 fLockout: LongBool;

 szCallsign: array [0..31] of Char;

 szComments: array [0..255] of Char;

end;

Fields

cbSize

Specifies the size of the MEMORYENTRY structure in bytes (not including any information appended to

the end such as transmission schedules).

szName

Specifies the name of the memory record that the user has nominated.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

38

This field is only supported if the RADIOMEM_NAME flag is specified in the dwMemFeatures field in the

RADIODEVCAPS structure.

dwFrequency

Specifies the frequency (in Hz) stored in the memory record. If bit 31 is set, the frequency in the low 31

bits are multiplied by ten (allowing up to a 21 GHz range).

This field must be supported and be greater than zero (unless deleting a memory record).

dwStepSize

Specifies the step size to set when the record is recalled in Hz. If the value is zero, the step size is not

specified.

This field is only supported if the RADIOMEM_STEPSIZE flag is specified in the dwMemFeatures field

in the RADIODEVCAPS structure.

dwMode

Specifies the mode to set when the record is recalled. The value corresponds to a RADIOMODE_xxx

constant. If the value is less than zero, the mode is not specified.

This field is supported if the RADIOMEM_MODE flag is specified in the dwMemFeatures field.

dwModeExData

Specifies mode dependant data.

dwSquelch

Specifies the squelch level to set when the record is recalled. If the value is less than zero, the squelch is

not specified.

 This field is supported if the RADIOMEM_SQUELCH flag is specified in the dwMemFeatures field.

dwRfInput

Specifies which RF input to use when the record is recalled. If zero is specified, the RF input selection is

not changed.

This field is supported if the RADIOMEM_RFINPUT flag is specified in the dwMemFeatures field.

dwAtten

Specifies the attenuator setting when the record is recalled. The range will correspond to the receiver’s

attenuator range (and RADIOCAL_ATTEN will be set if the value is in dB). If the value is less than zero,

the attenuator level is not specified.

This field is supported if the RADIOMEM_ATTEN flag is specified in the dwMemFeatures field.

dwPreamp

Specifies the preamplifier gain level when the record is recalled. The range will correspond to the

receiver’s preamplifier range (and RADIOCAL_PREAMP will be set if the value is in dB). If the value is

less than zero, the preamplifier level is not specified.

This field is supported if the RADIOMEM_PREAMP flag is specified in the dwMemFeatures field.

dwBandwidth

Specified the IF bandwidth (in Hz) to set when the record is recalled. If the value is zero, the bandwidth is

not specified.

This field is supported if the RADIOMEM_BANDWIDTH flag is specified in the dwMemFeatures field.

dwAgc

Specifies the AGC settings to set when the record is recalled. The range and format supported is specified

by the receiver’s AGC capabilities. If the value is less than zero, the AGC settings are not specified.

The field is supported if the RADIOMEM_AGC flag is specified in the dwMemFeatures field.

dwIfGain

Specifies the IF gain level the if AGC is deactivated or the limits the maximum gain which can be

achieved by AGC action. If the IF gain is not stored, the value is set to 0x80000000.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

39

The field is supported if the RADIOMEM_IFGAIN flag is specified in the dwMemFeatures field.

dwIfShift

Specifies the amount of IF shift to apply (in Hz) when the record is recalled. If the IF shift is not stored,

the value is set to 0x80000000.

The field is supported if the RADIOMEM_IFSHIFT flag is specified in the dwMemFeatures field.

fAfc

Specifies whether the AFC is active or not when the record is recalled. If zero is specified, the AFC is

deactived, a positive value activates the AFC and a negative value does not change the AFC setting.

The field is supported if the RADIOMEM_AFC flag is specified in the dwMemFeatures field.

dwNumHits

Specifies the number of times the memory scanner has paused at this record due to the signal level being

above the squelch level.

The field is supported if the RADIOMEM_HITCOUNT flag is specified in the dwMemFeatures field.

dwLastSLevel

Specifies the last recorded signal level for the associated frequency.

The field is supported if the RADIOMEM_SLEVEL flag is specified in the dwMemFeatures field.

dwMaxSLevel

Specifies the maximum recorded signal level for the associated frequency.

The field is supported if the RADIOMEM_SLEVEL flag is specified in the dwMemFeatures field.

dwNumSchedules

Specifies the number of transmission schedules stored in the record. An array of TXSCHEDULE entries

(the number of entries specified by this field) follows the MEMORYENTRY structure, its location specified

by the dwScheduleOffset field.

The field is supported if the RADIOMEM_SCHEDULE flag is specified in the dwMemFeatures field.

dwScheduleOffset

Specifies the offset from the beginning of the MEMORYENTRY structure to the TXSCHEDULE array.

The field is supported if the RADIOMEM_SCHEDULE flag is specified in the dwMemFeatures field.

dwGroups

Specifies the group(s) allocation for the record.

The field is supported if the RADIOMEM_GROUPS flag is specified in the dwMemFeatures field.

dtStored

Specifies the date and time the record was initially stored into the memory. If this is zero, the field is not

supported.

The field is supported if the RADIOMEM_DATETIME flag is specified in the dwMemFeatures field.

dtModified

Specifies the date and time the record was last modified. If this is zero, the field is not supported.

The field is supported if the RADIOMEM_DATETIME flag is specified in the dwMemFeatures field.

dtRecalled

Specifies the date and time the record was last recalled. If this is zero, the field is not supported.

The field is supported if the RADIOMEM_DATETIME flag is specified in the dwMemFeatures field.

fLockout

Specifies whether the record is excluded from memory scans or not.

The field is supported if the RADIOMEM_LOCKOUT flag is specified in the dwMemFeatures field.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

40

szCallsign

Specifies the callsign associated with the frequency stored in the record.

The field is supported if the RADIOMEM_CALLSIGN flag is specified in the dwMemFeatures field.

szComments

Specifies the comment the user has included in the record.

The field is supported if the RADIOMEM_COMMENT flag is specified in the dwMemFeatures field.

MODDEF

The MODDEF structure describes a supported modulation mode and its associated attributes. This is included

as part of the RADIODEVCAPS structure passed in the xrsPluginStart function.

C/C++:

typedef struct _MODDEF {

int iMode;

DWORD dwMaxParam1;

DWORD dwMaxParam2;

DWORD dwMaxParam3;

DWORD dwMaxParam4;

} MODDEF, FAR *LPMODDEF;

Delphi:

type

 PModDef = ^TModDef;

 TModDef = record

 iMode: Integer;

 dwMaxParam1: Longint;

 dwMaxParam2: Longint;

 dwMaxParam3: Longint;

 dwMaxParam4: Longint;

 end;

Fields

iMode

Specifies the mode (RADIOMODE_xxx). The meaning of the remainder of the fields depends on this

value.

dwMaxParam1

CW:

 Not used.

LSB, USB:

 Specifies the maximum ‘peak envelope power’ supported. This is zero if it is not adjustable.

AM:

 Specifies the maximum ‘modulation depth’. This is zero if it is not adjustable.

FMN, FMM, FMW:

 Specifies the maximum frequency deviation that can be set. This is zero if it is not adjustable.

FSK:

 Specifies the highest base frequency for an FSK transmission in Hz.

DAB:

 Specifies the supported digital audio broadcasting standards. Each set bit represents supported

standards:

 0 = Eureka 147

 1 = IBOC

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

41

 2 = WordSpace

 3 = DRM

dwMaxParam2

CW, LSB, USB, AM, DAB:

 Not used.

FMN, FMM, FMW:

 Specifies the maximum base frequency that can be set. This is zero if it is not adjustable.

FSK:

 Specifies the maximum shift frequency in Hz.

dwMaxParam3

CW, LSB, USB, AM, FMN, FMW, DAB:

 Not used.

FMW:

 Specifies the maximum pilot tone frequency that can be set. This is zero if it is not supported.

FSK:

 Specifies the maximum baud rate for the transmission.

dwMaxParam4

CW, LSB, USB, AM, FMN, FMM, FMW, DAB:

 Not used.

FSK:

 Specifies the number of ‘shapes’ supported.

MODPARAMS

The MODPARAMS structure is used to specify the general modulation parameters used in the PMT_MODE

command (and receive in the PNT_MODE notification).

C/C++:

typedef struct _MODPARAMS {

 DWORD dwPrimaryModeParam1;

 DWORD dwPrimaryModeParam2;

 DWORD dwPrimaryModeParam3;

 DWORD dwPrimaryModeParam4;

 DWORD dwSecondaryCarrierFreq;

 DWORD dwSecondaryModeParam1;

 DWORD dwSecondaryModeParam2;

 DWORD dwSecondaryModeParam3;

 DWORD dwSecondaryModeParam4;

} MODPARAMS, FAR *LPMODPARAMS;

Delphi:

type

 PModParams = ^TModParams;

 TModParams = record

 dwPrimaryModeParam1: Longint;

 dwPrimaryModeParam2: Longint;

 dwPrimaryModeParam3: Longint;

 dwPrimaryModeParam4: Longint;

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

42

 dwSecondaryCarrierFreq: Longint;

 dwSecondaryModeParam1: Longint;

 dwSecondaryModeParam2: Longint;

 dwSecondaryModeParam3: Longint;

 dwSecondaryModeParam4: Longint;

 end;

Fields

The meaning for each of these parameters (one to four) depends on the mode.

dwPrimaryModeParam1

CW:

 Not used.

LSB, USB:

 Specifies the ‘peak envelope power’. The dwMaxParam1 field in the MODDEF structure specifies the

maximum limit.

 If the RADIOCAL_SSBMODPEP flag is set in the dwCalibrated field of the RADIODEVCAPS

structure, this value is specified as a percentage of the max.

AM:

 Specifies the ‘modulation depth’. The maximum limit is specifies by the dwMaxParam1 field in the

MODDEF structure.

 If the RADIOCAL_AMMODDEPTH flag is set in the dwCalibrated field of the RADIODEVCAPS

structure, this value is specified as a percentage of the max.

FMN, FMM, FMW:

 Specifies the maximum frequency deviation either side of the carrier.

 If the RADIOCAL_FMDEV flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

field is specified in Hz.

FSK:

 Specifies the lower frequency of the FSK transmission in Hz.

DAB:

 Specifies the Digital Audio Broadcasting standard:

 0 = Eureka 147

 1 = IBOC

 2 = WordSpace

 3 = DRM

dwPrimaryModeParam2

CW, LSB, USB, AM, DAB:

 Not used.

FMN, FMM, FMW:

 Specifies the base bandwidth of the input signal in Hz.

FSK:

 Specifies the frequency shift from the lower frequency.

dwPrimaryModeParam3

CW, LSB, USB, AM, FMN, FMM, DAB:

 Not used.

FMW:

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

43

 Specifies whether the transmission is in stereo or not. If this is zero, the transmission is in mono (no

pilot tone or 2nd channel sub-carrier is transmitted). If this is one, a pilot tone is transmitted at 19 kHz

with the 2nd channel sub-carrier transmitted at 38 kHz.

 If the transmitter supports variable pilot tone frequencies, this specifies the pilot tone frequency (the

sub-carrier is double the pilot tone frequency).

 The dwMaxParam3 field of the MODDEF structure defines the maximum value. If the

RADIOCAL_FMWPILOTTONE flag is specified in the dwCalibrated field, then this value is in Hz.

FSK:

 Specifies the baud rate of the transmission.

dwPrimaryModeParam4

CW, LSB, USB, AM, FMN, FMM, FMW, DAB:

 Not used.

FSK:

 Specifies shaping of the frequency transitions.

dwSecondaryCarrierFreq

Specifies the frequency of the secondary (or sub) carrier.

dwSecondaryModeParam1

The same as dwPrimaryModeParam1 but specifies the parameters for the secondary sub-carrier.

dwSecondaryModeParam2

The same as dwPrimaryModeParam2 but specifies the parameters for the secondary sub-carrier.

dwSecondaryModeParam3

The same as dwPrimaryModeParam3 but specifies the parameters for the secondary sub-carrier.

dwSecondaryModeParam4

The same as dwPrimaryModeParam4 but specifies the parameters for the secondary sub-carrier.

PARAEQCAPS

The PARAEQCAPS structure is used to specify the capabilities of the parametric equaliser if supported on a

receiver and/or transmitter. It is accessed from the lpParaEqCaps field of the RADIODEVCAPS structure.

C/C++:

typedef struct _PARAEQCAPS {

int iMaxParaPoles;

int iMinParaFreq;

int iMaxParaFreq;

int iMinParaQ;

int iMaxParaQ;

int iParaLevelRange;

int iParaLevelStep;

} PARAEQCAPS, FAR *LPPARAEQCAPS;

Delphi:

type

 PParaEqCaps = ^TParaEqCaps;

 TParaEqCaps = record

 iMaxParaPoles: Integer;

 iMinParaFreq: Integer;

 iMaxParaFreq: Integer;

 iMinParaQ: Integer;

 iMaxParaQ: Integer;

 iParaLevelRange: Integer;

 iParaLevelStep: Integer;

 end;

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

44

Fields

iMaxParaPoles

Specifies the maximum number of poles the parametric equaliser supports.

iMinParaFreq

Specifies the minimum frequency for a pole in Hz.

iMaxParaFreq

Specifies the maximum frequency for a pole in Hz.

iMinParaQ

Specifies the minimum Q for a pole in increments of 0.1.

iMaxParaQ

Specifies the maximum Q for a pole in increments of 0.1.

iParaLevelRange

Specifies the maximum level adjustment range (boost or cut) of a pole.

If RADIOCAL_EQUALIZER is specified in the dwCalibrated field of the RADIODEVCAPS structure,

this value is in multiples of 0.1 dB.

iParaLevelStep

Specifies the granularity of the level adjustment.

PARAEQPARAMS

The PARAEQPARAMS structure is used to define a node in a parametric equaliser. This is used in the

PMR/T_AUDIOFILTER command and the PNR/T_AUDIOFILTER notification. The lpData parameter can

point to an array of these (the number determined by the cbData parameter).

A parametric equaliser provides the ability to adjust the centre frequency, Q and gain of a number of

independent poles (defined by iMaxParaPoles in the RADIODEVCAPS structure), in order to compensate for

non-ideal room acoustics. The common graphic equaliser (which also may be available in the

AUDIOFILTER command and notification) is a form of parametric equaliser, in which the pole frequencies

and Qs are fixed and only the gain of each pole is variable.

C/C++:

typedef struct _PARAEQPARAMS {

DWORD dwFreq;

DWORD dwQ;

DWORD dwLevel;

} PARAEQPARAMS, FAR *LPPARAEQPARAMS;

Delphi:

type

 PParaEqParams = ^TParaEqParams;

 TParaEqParams = record

 dwFreq: Longint;

 dwQ: Longint;

 dwLevel: Longint;

 end;

Fields

dwFreq

Specifies the centre frequency of the gain or attenuation in Hz. The frequency can range from 0 to

iMaxParaFreq specified in the RADIODEVCAPS structure. iMaxParaFreq will typically not exceed 20

kHz.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

45

dwQ

Specifies the ‘Q’ of each pole and equals the ratio of its centre frequency to its bandwidth at –3 dB. The

value of Q is specifies in multiples of 0.1 and ranges from 0.1 to iMaxParaQ specified in the

RADIODEVCAPS structure.

dwLevel

Specifies the amount of boost or cut at the centre frequency. A positive level is used to provide gain, and

a negative level is used to provide a partial notch.

The limits of gain or attenuation are specified by the iParaLevelRange in the RADIODEVCAPS structure.

RADIODEVCAPS

The RADIODEVCAPS structure describes the capabilities of a radio device that is passed as a parameter in

the xrsPluginStart function.

The SDK provides a function xrsCopyRadioDevCaps to make a copy of this structure for local use.

C/C++:

typedef struct _RADIODEVCAPS {

int cbTotalSize;

int cbFixedSize;

int cbFreqRangeSize;

/*--- Product information ---*/

CHAR szManufacturer[32];

CHAR szProduct[32];

CHAR szSerialNum[16];

CHAR szUserDefName[64];

DWORD dwAppVersion;

int iDeviceNum;

/*--- Global information ---*/

DWORD dwFreqRes;

DWORD dwCalibrated;

LPTONECAPS lpToneCaps;

int iMinBpFreq;

int iMaxBpFreq;

LPPARAEQCAPS lpParaEqCaps;

LPGRAPHEQCAPS lpGraphEqCaps;

/*--- Receiver information ---*/

DWORD dwRxFeatures;

LPVOID lpRxExtraInfo;

int iSquelchFeatures;

int iMinSquelchLevel;

int iMaxSquelchLevel;

int iMinSquelchNoise;

int iMaxSquelchNoise;

int iNumRxFreqRanges;

LPFREQRANGE lpRxFreqRanges;

int iNumRxModes;

int cbDemodDefSize;

LPDEMODDEF lpRxModeDefs;

int iNumRfInputs;

int iMaxAtten;

int iAttenStep;

int iMaxPreamp;

int iPreampStep;

int iAgcSpeeds;

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

46

LPAGCEXCAPS lpAgcExCaps;

int iMinIfGain;

int iMaxIfGain;

int iMaxVolume;

int iVolumeStep;

int iBalanceRange;

int iBalanceStep;

int iRxAudioSources;

int iMaxNbThreshold;

int iMaxNotchFreq;

int iMaxNoiseReduction;

LPDSPCAPS lpRxDspCaps;

/*--- Transmitter information ---*/

DWORD dwTxFeatures;

LPVOID lpTxExtraInfo;

int iNumTxFreqRanges;

LPFREQRANGE iTxFreqRanges;

int iNumTxModes;

int cbModDefSize;

LPMODDEF lpTxModeDefs;

int iTxModSources;

int iMaxTxPower;

int iMaxAntiVox;

int iAudioProcFlags;

int cbAudioProcSize;

LPTXAUDIOPROC lpAudioProcCaps;

int iTxSelCallTypes;

int iMaxToneLevel;

int iMaxToneDuration;

int iTxInitiators;

int iTxMaxReleaseDelay;

LPDSPCAPS lpTxDspCaps;

/*--- Memory Support ---*/

DWORD dwMemFeatures;

DWORD dwMaxRecords;

int iNumBanks;

} RADIODEVCAPS, FAR *LPRADIODEVCAPS;

Delphi:

type

PRadioDevCaps = ^TRadioDevCaps;

TRadioDevCaps = record

 cbTotalSize: Integer;

 cbFixedSize: Integer;

 cbFreqRangeSize: Integer;

 {--- Product information ---}

 szManufacturer: array [0..31] of Char;

 szProduct: array [0..31] of Char;

 szSerialNum: array [0..15] of Char;

 szUserDefName: array [0..63] of Char;

 dwAppVersion: Longint;

 iDeviceNum: Integer;

 {--- Global information ---}

 dwFreqRes: Longint;

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

47

 dwCalibrated: Longint;

 lpToneCaps: PToneCaps;

 iMinBpFreq: Integer;

 iMaxBpFreq: Integer;

 lpParaEqCaps: PParaEqCaps;

 lpGraphEqCaps: PGraphEqCaps;

 {--- Receiver information ---}

 dwRxFeatures: Longint;

 lpRxExtraInfo: Pointer;

 iSquelchFeatures: Integer;

 iMinSquelchLevel: Integer;

 iMaxSquelchLevel: Integer;

 iMinSquelchNoise: Integer;

 iMaxSquelchNoise: Integer;

 iNumRxFreqRanges: Integer;

 lpRxFreqRanges: PFreqRange;

 iNumRxModes: Integer;

 cbDemodDefSize: Integer;

 lpRxModeDefs: PDemodDef;

 iNumRfInputs: Integer;

 iMaxAtten: Integer;

 iAttenStep: Integer;

 iMaxPreamp: Integer;

 iPreampStep: Integer;

 iAgcSpeeds: Integer;

 lpAgcExCaps: PAgcExCaps;

 iMinIfGain: Integer;

 iMaxIfGain: Integer;

 iMaxVolume: Integer;

 iVolumeStep: Integer;

 iBalanceRange: Integer;

 iBalanceStep: Integer;

 iRxAudioSources: Integer;

 iMaxNbThreshold: Integer;

 iMaxNotchFreq: Integer;

 iMaxNoiseReduction: Integer;

 lpRxDspCaps: PDspCaps;

 {--- Transmitter information ---}

 dwTxFeatures: Longint;

 lpTxExtraInfo: Pointer;

 iNumTxFreqRanges: Integer;

 lpTxFreqRanges: PFreqRange;

 iNumTxModes: Integer;

 cbModDefSize: Integer;

 lpTxModeDefs: PModDef;

 iTxModSources: Integer;

 iMaxTxPower: Integer;

 iMaxAntiVox: Integer;

 iAudioProcFlags: Integer;

 cbAudioProcSize: Integer;

 lpAudioProcCaps: PTxAudioProc;

 iTxSelCallTypes: Integer;

 iMaxToneLevel: Integer;

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

48

 iMaxToneDuration: Integer;

 iTxInitiators: Integer;

 iTxMaxReleaseDelay: Integer;

 lpTxDspCaps: PDspCaps;

 {--- Memory support ---}

 dwMemFeatures: Longint;

 dwMaxMemories: Longint;

 iNumBanks: Integer;

end;

Fields

cbTotalSize

Specifies the total size of entire RADIODEVCAPS data including any variable length data located after the

fixed size structure (the size specified by cbFixedSize). If a copy of this structure is required, this specifies

the amount of data to copy. Any pointers in the structure have to be translated when copied. The SDK

provides a function xrsCopyRadioDevCaps to simplify this process.

cbFixedSize

Specifies the size of this structure. This may change in the future as the size may grow as more features

are supported.

cbFreqRangeSize

Specifies the size of a FREQRANGE structure that is used in an array specifying all supported receiver and

transmitter frequency ranges or bands.

szManufacturer

A null-terminated string that specifies the manufacturer of the radio device.

szProduct

A null-terminated string that specifies the model number of the radio device.

szSerialNum

A null-terminated string that specifies the product’s serial number. This is manufacturer and product

specific.

szUserDefName

A null-terminated string that the user defines for the device.

dwAppVersion

Specifies the application version. The high word contains the major version number, the low word

specifies the minor version number of the application.

iDeviceNum

A logical device number for the radio device. This can be used to uniquely identify each device in a

multi-device system.

dwFreqRes

Specifies the frequency resolution of the device in Hz. This applies to both receivers and transmitters.

dwCalibrated

This specifies a range of flags to indicate which features are expressed in actual units instead of arbitrary

values. The flags include:

RADIOCAL_SLEVEL PN_SLEVEL and squelch level notifications in dBm

RADIOCAL_ATTEN attenuator notifications, commands & capabilities in dB

RADIOCAL_PREAMP preamp notifications, commands & capabilities in dB

RADIOCAL_IFGAIN IF gain notifications, commands & capabilities in dB

RADIOCAL_VOLUME volume notifications, commands & capabilities in 0.1 dB steps

RADIOCAL_BALANCE balance notifications, commands & capabilities in 0.1 dB steps

RADIOCAL_TONE .. bass, treble (& mid) in 0.1 dB steps

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

49

RADIOCAL_EQUALIZER parametric and/or graphic equaliser levels in 0.1 dB steps

RADIOCAL_TXPOWER transmitter power notifications, commands & capabilities in mW

RADIOCAL_ANTIVOX anti-vox notifications, commands & capabilities in dB

RADIOCAL_AUDIOGAIN audio gain notifications, commands & capabilities in dB

RADIOCAL_SSBMODPEP LSB and USB ‘peak envelope power’ expressed as a %

RADIOCAL_AMMODDEPTH AM modulation depth notifications, commands & cap’s in %

RADIOCAL_FMDEV FM deviation notifications, commands & capabilities in Hz

RADIOCAL_FMWPILOTTONE FM pilot tone value in Hz

lpToneCaps

Points to a TONECAPS structure that specifies the tone (bass, treble and mid-range) adjustment

capabilities of the receiver’s audio output and/or the transmitter’s input. If the device doesn’t support tone

controls, this is NULL.

iMinBpFreq

Specifies the minimum frequency in Hz that can be set for the audio bandpass filter in the receiver’s

audio output and/or the transmitter’s input. This is only used if the RADIOCAPS_BPFILTER flag is set

in the dwRxFeatures and/or dwTxFeatures fields.

iMaxBpFreq

Specifies the maximum frequency in Hz for the audio bandpass filter(s) in the device.

lpParaEqCaps

Points to a PARAEQCAPS structure that specifies the capabilities of the parametric equaliser if the device

has one. The RADIOCAPS_PARAMETRIC flag set in the dwRxFeatures and/or dwTxFeatures fields

specifies support.

lpGraphEqCaps

Points to a GRAPHEQCAPS structure that specifies the capabilities and properties of the graphic equaliser

if the device supports it. Support is specified by the RADIOCAPS_EQUALIZER flag set in the

dwRxFeatures and/or dwTxFeatures fields.

dwRxFeatures

This specifies a range of flags to indicate which features the receiver supports. The feature flags include:

RADIOCAPS_RECEIVER supports radio reception

RADIOCAPS_POWER supports on/off power control

RADIOCAPS_EXTREFOSC supports external reference osc. input

RADIOCAPS_BASSTREBLE supports base/treble tone controls

RADIOCAPS_MIDRANGE supports mid-range tone control

RADIOCAPS_BPFILTER supports bandpass filter

RADIOCAPS_PARAMETRIC supports parametric equalizer

RADIOCAPS_EQUALIZER supports graphic equalizer

RADIORXCAPS_PREAMP supports controllable preamp

RADIORXCAPS_ATTEN supports controllable attenuator

RADIORXCAPS_AGC supports switchable AGC (on/off/speed)

RADIORXCAPS_ADJAGC supports adjustable AGC parameters (attack, hold & decay)

RADIORXCAPS_IFGAIN supports adjustable IF gain

RADIORXCAPS_AGCGAIN supports adjustable maximum AGC gain

RADIORXCAPS_AFC supports switchable AFC

RADIORXCAPS_FMWSTEREO supports stereo reception in FMW

RADIORXCAPS_STEREO supports stereo reception in other modes

RADIORXCAPS_BALANCE supports audio balance control

RADIORXCAPS_LOUD supports switchable loudness compensation

RADIORXCAPS_NOISEBLANKER supports noise blanker

RADIORXCAPS_AUTONOTCH supports automatic notch filter

RADIORXCAPS_MANUALNOTCH supports manual notch filter

RADIORXCAPS_NOISEREDUCTION supports noise reduction

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

50

RADIORXCAPS_BLOCKSCAN supports the PM_BLOCKSCAN command

RADIORXCAPS_TRUNKING supports trunking decoding and tracking

lpRxExtraInfo

Pointer to extra info about the capabilities of the receiver. This is NULL if there is no extra information.

If it is not NULL, the first integer that this points to specifies the amount of extra information supplied in

bytes.

iSquelchFeatures

Specifies which squelch features are supported:

RXSQUELCH_SLEVEL supports squelch by signal level

RXSQUELCH_NOISE supports squelch by noise level

RXSQUELCH_CTCSS supports squelch by CTCSS tone

RXSQUELCH_SYLLABIC supports squelch by syllabic content

RXSQUELCH_DTMF supports squelch by DTMF tone burst

RXSQUELCH_2TONE supports squelch by 2-tone burst

RXSQUELCH_5TONE supports squelch by 5-tone burst

RXSQUELCH_DPL .. supports squelch by DPL burst

RXSQUELCH_VOICE supports squelch by Voice detection

RXSQUELCH_DCS .. supports squelch by DCS

iMinSquelchLevel

Specifies the minimum signal level that can be set for squelch control.

If the RADIOCAL_SLEVEL flag is set in the dwCalibrated field, then this value is in dBm.

iMaxSquelchLevel

Specifies the maximum signal level that can be set for squelch control.

If the RADIOCAL_SLEVEL flag is set in the dwCalibrated field, then this value is in dBm.

iMinSquelchNoise

Specifies the minimum noise level that can be set for squelch control.

iMaxSquelchNoise

Specifies the maximum noise level that can be set for squelch control.

iNumRxFreqRanges

Specifies the number of defined receiver frequency ranges in the FREQRANGE array pointed to by the

lpRxFreqRanges field below.

lpRxFreqRanges

Points to the receiver’s supported frequency ranges in a FREQRANGE array. The iNumRxFreqRanges

field above specifies the number of ranges in this array.

iNumRxModes

Specifies the number of defined receiver modes (some may be duplicates with different fixed IF

bandwidths). All modes are stored in a DEMODDEF array pointed to by the lpRxModeDefs field.

cbDemodDefSize

Specifies the size of the DEMODDEF structure that is used in an array specifying all supports modes and

associated properties.

lpRxModeDefs

Points to the receiver’s supported demodulation modes in a DEMODDEF array. The iNumRxModes field

specifies the number of modes in this array.

iNumRfInputs

Specifies how many RF inputs the receiver has.

iMaxAtten

Specifies the maximum RF attenuation of the receiver’s attenuator.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

51

iAttenStep

Specifies the granularity of the RF attenuator. If this is the same as iMaxAtten then the receiver only has

an on/off attenuator. If this is one, the attenuator is continuously adjustable from zero to iMaxAtten.

iMaxPreamp

Specifies the maximum RF amplification level of the receiver.

iPreampStep

Specifies the granularity of the amplification level. If this is the same as iMaxPreamp then the receiver

only has an on/off preamplifier. If this is one, the preamplifier is continuously adjustable from zero to

iMaxPreamp.

iAgcSpeeds

Specifies a range of flags that specify generic AGC speeds that the receiver supports:

RXAGCCAPS_OFF

RXAGCCAPS_MEDIUM

RXAGCCAPS_SLOW

RXAGCCAPS_FAST

RXAGCCAPS_VSLOW

RXAGCCAPS_VFAST

Each set flag corresponds to a RXAGC_xxx constant that can be used in the PMR_AGC command.

lpAgcExCaps

Points to an AGCEXCAPS structure that contains extended AGC capabilities of the receiver. If the

receiver doesn’t support these capabilities, then this is NULL.

iMinIfGain

Specifies the minimum IF gain level. This can be below 0 signifying the receiver also supports IF

attenuation. This field is only valid when the RADIORXCAPS_IFGAIN flag is set in the dwRxFeatures

field.

iMaxIfGain

Specifies the maximum IF gain level.

iMaxVolume

Specifies the maximum volume level that can be set. The lowest volume is always zero.

iVolumeStep

Specifies the granularity of the volume control. If this is one or zero, the volume is continuously

adjustable from zero to iMaxVolume.

iBalanceRange

Specifies the maximum absolute value (positive or negative) for the PMR_BALANCE command. This is

only supported if the RADIORXCAPS_BALANCE flag is set in the dwRxFeatures field.

iBalanceStep

Specifies the granularity for balance adjustment.

iRxAudioSources

Specifies a range of flags that specify supported selectable audio sources for the device’s audio output:

RXAUDIOSRCCAPS_RADIO receiver demodulator

RXAUDIOSRCCAPS_EXT external (line in)

RXAUDIOSRCCAPS_DSP DSP/DAC

Each set flag corresponds to a RXAUDIOSRC_xxx constant that can be used in the PMR_AUDIOSRC

command.

iMaxNbThreshold

Specifies the maximum noise blanker threshold that can be set in the PMR_NOISEBLANKER command.

This is supported if the RADIORXCAPS_NOISEBLANKER flag is set in the dwRxFeatures field.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

52

iMaxNotchFreq

Specifies the maximum frequency in Hz that the manual notch filter can be set to. Support for a manual

notch is specified the RADIORXCAPS_MANUALNOTCH flag set in the dwRxFeatures field.

iMaxNoiseReduction

Specifies the maximum noise reduction type that can be selected with the PMR_NOISEREDUCT

command. This is supported if the RADIORXCAPS_NOISEREDUCT flag is set in the dwRxFeatures

field.

lpRxDspCaps

Points to a DSPCAPS structure that specifies the capabilities of the DSP in the receiver. This is NULL if

the receiver does not have a DSP that can be controlled by a plug-in.

dwTxFeatures

This specifies a range of flags where each flag that is set indicates a particular feature the transmitter

supports. The feature flags include:

RADIOCAPS_TRANSMITTER supports radio transmitting

RADIOCAPS_POWER supports on/off power control

RADIOCAPS_EXTREFOSC supports external reference osc. input

RADIOCAPS_BASSTREBLE supports base/treble tone controls

RADIOCAPS_MIDRANGE supports mid-range tone control

RADIOCAPS_BPFILTER supports bandpass filter

RADIOCAPS_PARAMETRIC supports parametric equalizer

RADIOCAPS_EQUALIZER supports graphic equalizer

RADIOTXCAPS_SUBCARRIER supports sub-carrier transmission

RADIOTXCAPS_ANTIVOX supports anti-vox adjustment

RADIOTXCAPS_AUDIOGAIN supports audio input gain adjustment

RADIOTXCAPS_TXRELEASE supports adjustable Tx release times

RADIOTXCAPS_ADJDTMFBURST supports adjustable DTMF burst duration

RADIOTXCAPS_ADJTONERATE supports adjustable 2/5-tone rate

RADIOTXCAPS_FMWSTEREO supports stereo transmission in FMW

RADIOTXCAPS_STEREO supports stereo transmission in other modes

lpTxExtraInfo

Pointer to extra info about the capabilities of the transmitter. This is NULL if there is no extra

information. If it is not NULL, the first integer that this points to specifies the amount of extra

information supplied in bytes.

iNumTxFreqRanges

Specifies the number of defined transmitter frequency bands in the FREQRANGE array pointed to by the

lpTxFreqRanges field below.

lpTxFreqRanges

Points to the transmitter’s supported frequency bands in a FREQRANGE array. The iNumTxFreqRanges

field above specifies the number of bands in this array.

iNumTxModes

Specifies the number of supported transmitter modes. All modes are stored in a MODDEF array pointed to

by the lpTxModeDefs field.

cbModDefSize

Specifies the size of the MODDEF structure that is used in an array specifying all supports modes and

associated properties.

lpTxModeDefs

Points to the transmitter’s supported modulation modes in a MODDEF array. The iNumTxModes field

specifies the number of modes in this array.

iTxModSources

Contains a range of flags that specify supported sources to the transmitter’s demodulator:

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

53

TXMODSRCCAPS_MIC supports microphone source

TXMODSRCCAPS_EXT supports external audio signal source

TXMODSRCCAPS_DSP supports source from computer from DAC and/or DSP

TXMODSRCCAPS_KEY supports morse key source

TXMODSRCCAPS_MISC1 supports miscellaneous source

TXMODSRCCAPS_MISC2 supports another miscellaneous source

Each set flag corresponds to a TXMODSRC_xxx constant that can be used in the PMT_MODSRC

command.

iMaxTxPower

Specifies the maximum transmitter output power that can be set with the PMT_RFPOWER command.

iMaxAntiVox

Specifies the maximum anti-vox level that can be set with the PMT_ANTIVOX command.

iAudioProcFlags

Contains a range of flags that specify which audio input processing the transmitter supports. These

include:

TXAUDIOPROC_COMP supports compression

TXAUDIOPROC_CLIP supports clipping

TXAUDIOPROC_AGC supports AGC

cbAudioProcSize

Specifies the size of the TXAUDIOPROC structure referred to by the lpAudioProcCaps field below.

lpAudioProcCaps

Points to a TXAUDIOPROC structure that specifies the maximum values for each of the supported audio

processing features. If any feature is not supported, its associated field is set to zero.

iTxSelCallTypes

Specifies which selective calling types are supported by the transmitter with an set of flags:

TXSELCALLCAPS_NORMAL supports no selective calling

TXSELCALLCAPS_CTCSS supports CTCSS

TXSELCALLCAPS_SINGLE supports single tone burst

TXSELCALLCAPS_DTMF supports DTMF burst

TXSELCALLCAPS_2TONE supports two-tone sequential burst

TXSELCALLCAPS_5TONE supports five-tone sequential burst

TXSELCALLCAPS_DPL supports DPL burst

Each set flag corresponds to a TXSELCALL_xxx constant that can be used in the PMT_SELCALL

command.

iMaxToneLevel

Specifies the maximum tone level that can be set for selective calling types that use tones.

iMaxToneDuration

Specifies the maximum duration that can be set for a tone burst in selective calling types that use a tone

burst.

iTxInitiators

Contains a range of flags that specify the supported methods of transmission activation:

TXINITIATE_MICSWITCH manual activation by microphone switch

TXINITIATE_SECONDARY manual activation by secondary switch (eg. foot-switch)

TXINITIATE_SOFTWARE manual activation by software (see PMT_TX command)

TXINITIATE_VOX voice activation

iTxMaxReleaseDelay

Specifies the maximum release delay that can be set for a transmitter.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

54

lpTxDspCaps

Points to a DSPCAPS structure that specifies the capabilities of the DSP in the input section of the

transmitter. This is NULL if the transmitter does not have a DSP that can be controlled by a plug-in.

dwMemFeatures

Specifies which fields are supported by the frequency memory in the application:

RADIOMEM_BANKS memory allocated in banks

RADIOMEM_FOLDERS stores entries in folders with tree structure and text descriptions

RADIOMEM_NAME .. includes name field

RADIOMEM_MODE .. includes mode field

RADIOMEM_SQUELCH includes squelch settings

RADIOMEM_STEPSIZE includes step size to set when recalled

RADIOMEM_GROUPS includes group allocations

RADIOMEM_ATTEN includes attenuator settings

RADIOMEM_PREAMP includes preamp settings

RADIOMEM_BANDWIDTH includes bandwidth settings

RADIOMEM_IFSHIFT includes IF shift settings

RADIOMEM_AGC ... includes AGC settings (including IF gain)

RADIOMEM_AFC ... includes AFC settings

RADIOMEM_HITCOUNT includes number of signal hits

RADIOMEM_SLEVEL includes signal level readings (max and/or last)

RADIOMEM_SCHEDULE includes transmission schedule

RADIOMEM_DATETIME includes date/time stored, modified and/or accessed

RADIOMEM_LOCKOUT includes memory lockout flag

RADIOMEM_CALLSIGN includes station callsign

RADIOMEM_COMMENT includes comments/description

dwMaxRecords

Specifies the maximum number of records that can be stored in each bank or folder. For applications that

do not support banks or folders, this specifies the maximum number that can be stored in a file. If this is

set to zero, there is no practical limit.

iNumBanks

Specifies the number of banks in the application’s frequency memory. If the application does not support

banks, this is either set to zero or one.

RECORDINGPARAMS

This structure contains information about audio recording being started.

C/C++:

typedef struct {

 char FileName[1024];

 RecFileNameParams Params;

 BOOL PauseIfNoSignal;

 DWORD MaxRecSizeKB;

 DWORD SizeToAutoIncrement; // valid only when append

} RECORDINGPARAMS;

Fields:

FileName

Name of the file to record

Params

One of values RECOVERWRITE,RECAPPEND,RECINCREMENT to define recorder behaviour if the

recording file name already exists.

PauseIfNoSignal

If nonzero, data are not written to the file during squelched state.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

55

MaxRecSizeKB

File size in kB at which the recording should stop. If zero, the recording doesn't stop automatically.

SizeToAutoIncrement

File size in MB at which the recording continues in another file with incremented file name.

SIGNAL_PARAMS

This structure contains measured signal parameters.

C/C++:

typedef struct

{

 DWORD dwFlags;

 int iFreqError;

 DWORD dwFMDeviation;

 DWORD dwAMDepth;

} SIGNAL_PARAMS,*PSIGNAL_PARAMS;

Fields

dwFlags

Combination of values SIGP_FREQ_ERROR, SIGP_FM_DEVIATION, and SIGP_AM_DEPTH to

mark which fields are valid

iFreqError

Frequency offset in 0.1 Hz steps

dwFMDeviation

Frequency deviation in Hz

dwAMDepth

AM depth in %

SQUELCHSETTINGS

The SQUELCHSETTINGS structure is used to define the squelch parameters for enabled squelch features.

This is used in the PMR_SQUELCH command and the PNR_SQUELCH notification.

C/C++:

typedef struct _SQUELCHSETTINGS {

DWORD dwSLevel;

DWORD dwNLevel;

DWORD dwCtcssFreq;

DWORD dwBurstType;

DWORD dwBurstData;

DWORD dwVoice;

int iDCS;

} SQUELCHSETTINGS, FAR *LPSQUELCHSETTINGS;

Delphi:

type

PSquelchSettings = ^TSquelchSettings;

TSquelchSettings = record

 dwSLevel: Longint;

 dwNLevel: Longint;

 dwCtcssFreq: Longint;

 dwBurstType: Longint;

 dwBurstData: Longint;

 dwVoice: Longint;

 iDCS: Integer;

 end;

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

56

Fields

dwSLevel

If signal level squelch is enabled and the signal level is below dwSLevel, the squelch will activate. The

value must be between iMinSquelchLevel and iMaxSquelchLevel as defined in the RADIODEVCAPS

structure.

dwNLevel

If noise squelch is enabled and the noise level is above dwNLevel, the squelch will activate. The value

must be between iMinSquelchNoise and iMaxSquelchNoise as defined in the RADIODEVCAPS structure.

dwCtcssFreq

If CTCSS squelch is enabled and the CTCSS tone received is different to dwCtcssFreq, the squelch will

activate. The tone frequency is specified in milli-hertz (mHz).

dwBurstType

Can be one of the following burst types:

 DTMF burst (inactive / tone-pair)

 2-tone burst (inactive / tone-set)

 5-tone burst (inactive / tone-set)

 DPL burst (inactive / address and EOT)

If enabled, the squelch will deactivate when the tone burst is received (it will reactive when one of the

previous conditions are met).

dwBurstData

Specifies the data for the above burst type (shown in bold).

dwVoice

Specifies the percentage of voice probability below which the squelch should activate.

iDCS

Specifies the DCS code used for squelch control. The value is the binary equivalent of the octal code (i.e.

code 043 is specified as 35). Negative values indicate reverse codes (i.e. reversed code 043 is specified as

-35).

Remarks

At least one of the following squelch methods has to be enabled:

 Signal level (inactive / s-level = iMinSquelchLevel to iMaxSquelchLevel)

 Noise (inactive / n-level = iMinSquelchNoise to iMaxSquelchNoise)

 CTCSS (inactive / freq in mHz)

 Syllabic (inactive / active)

and optionally one of:

 DTMF burst (inactive / tone-pair)

 2-tone burst (inactive / tone-set)

 5-tone burst (inactive / tone-set)

 DPL burst (inactive / address and EOT)

Squelch activity can be described with the following formulae:

Inactive = (SLevel s-level) and (Noise n-level) and (CTCSS = freq) and (Syllabic) and

{(DTMF = tone-pair) or (n-tone = tone-set) or (DPL = address)}

Active = (SLevel < s-level) or (Noise > n-level) or (CTCSS freq) or (not Syllabic) or (DPL = EOT)

where () = equate if enabled, otherwise ignore

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

57

TONECAPS

The TONECAPS structure is used in the RADIODEVCAPS structure to specify the capabilities of the audio

tone adjustments in the receiver and/or transmitter.

If the RADIOCAL_TONE flag is specified in the dwCalibrated field of the RADIODEVCAPS structure, then

all the values in this structure are multiples of 0.1 dB.

C/C++:

typedef struct _TONECAPS {

int iBassRange;

int iBassStep;

int iMidRange;

int iMidStep;

int iTrebleRange;

int iTrebleStep;

} TONECAPS, FAR *LPTONECAPS;

Delphi:

type

 PToneCaps = ^TToneCaps;

 TToneCaps = record

 iBassRange: Integer;

 iBassStep: Integer;

 iMidRange: Integer;

 iMidStep: Integer;

 iTrebleRange: Integer;

 iTrebleStep: Integer;

 end;

Fields

iBassRange

Specifies the maximum range of bass adjustment above and below the normal level.

iBassStep

Specifies the granularity of bass adjustment.

iMidRange

Specifies the maximum range of mid-range adjustment above and below the normal level.

iMidStep

Specifies the granularity of mid-range adjustment.

iTrebleRange

Specifies the maximum range of treble adjustment above and below the normal level.

iTrebleStep

Specifies the granularity of treble adjustment.

TXAUDIOPROC

The TXAUDIOPROC structure is used to specify the parameters for audio input processing on a transmitter. It

also used in the lpAudioProcCaps field in the RADIODEVCAPS structure for specifying the maximum values

for these parameters.

C/C++:

typedef struct _TXAUDIOPROC {

DWORD dwCompression;

DWORD dwClipping;

DWORD dwAgc;

} TXAUDIOPROC, FAR *LPTXAUDIOPROC;

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

58

Delphi:

type

 PTxAudioProc = ^TTxAudioProc;

 TTxAudioProc = record

 dwCompression: Longint;

 dwClipping: Longint;

 dwAgc: Longint;

 end;

Fields

dwCompression

Specifies the compression level from above zero to dwCompression specified under the lpAudioProcCaps

field in the RADIODEVCAPS structure. If zero is specified, the signal is not compressed.

dwClipping

Specifies the clipping level from above zero to dwClipping specified under the lpAudioProcCaps field in

the RADIODEVCAPS structure. If zero is specified, the signal is not clipped.

dwAgc

Specifies the AGC level from above zero to dwAgc specified under the lpAudioProcCaps field in the

RADIODEVCAPS structure. If zero is specified, AGC is not applied to the signal.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

59

XRS Commands

If memory is allocated for the lpData parameter of a command, after the command has returned, the memory

can be immediately freed. This applies to all commands.

There are four classes of commands: ones that apply only to receivers (PMR_xxx), ones that apply only to

transmitters (PMT_xxx), global and those that apply to neither (PM_xxx).

To determine whether the device supports receiving, transmitting or both, check for

RADIOCAPS_RECEIVER and/or RADIOCAPS_TRANSMITTER in the dwRxFeatures and dwTxFeatures

fields in the RADIODEVCAPS structure.

PM_CAPABILITIES

The PM_CAPABILITIES command informs the application that the capabilities of the receiver changes due

to the plug-in starting/stopping. If the command is sent while the plug-in starting phase, the new capabilities

must be specified through a modified copy of the RADIODEVCAPS structure passed as argument of the

xrsPluginStart exported entry point. Any changes in the content of the structure should affect only sections

covered by the running plug-in (i.e. only the list of available modes when the plug-in is a demodulator one).

Any change to the capabilities of the radio receiver must be changed back when the plug-in is stopped.

Parameters

dwParam

Not used.

cbData

The amount of memory occupied by the new RADIODEVCAPS structure.

lpData

Pointer to the new RADIODEVCAPS. After passing the information to the XRS server the memory can

be freed.

PM_CONNECTREMOTE

(used in G313 CSO and G315 CSO)

The PM_CONNECTREMOTE command tells the XRS server to connect to a remote receiver (if client-server

facilities are present).

Parameters

dwParam

Not used.

cbData

sizeof of CLIENTSERVER structure

lpData

Pointer to a CLIENTSERVER structure

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PM_CLOSED

The PM_CLOSED command informs the application that the plug-in has shut-down. The application will then

stop sending notifications to the plug-in (but the plug-in can be started again at a later time by the

application).

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

60

Parameters

dwParam

Not used.

lpData

Pointer to the null-terminated string that was sent to the application in the xrsPluginInit command.

The strings must be exactly the same.

Return Value

Always zero.

PM_CREATEFOLDER

The PM_CREATEFOLDER command is sent to the application to create a new subfolder in the currently

active folder.

Support for folders is specified by the presence of the RADIOMEM_FOLDERS flag in the dwMemFeatures

field in the RADIODEVCAPS structure.

Parameters

dwParam

Not used.

lpData

Points to a null-terminated string that specifies the name of the folder to create. This cannot be the same

as an existing subfolder in the currently active folder (but can be the same as subfolder in another folder).

Return Value

Zero if sub-folder was successfully created, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PM_DELETEFOLDER

The PM_DELETEFOLDER command is sent to the application to delete a subfolder in the currently active

folder.

Support for folders is specified by the presence of the RADIOMEM_FOLDERS flag in the dwMemFeatures

field in the RADIODEVCAPS structure.

Parameters

dwParam

Not used.

lpData

Points to a null-terminated string that specifies the name of the folder to delete.

Return Value

Zero if subfolder was successfully deleted, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PM_DISABLE

The PM_DISABLE command is sent to the application to disable various parts of the user interface.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

61

Parameters

dwParam

PD_NONE - Enables everything

PD_ALL - Disables entire interface

PD_POWER - Disables the power on/off control

PD_CLOSE - Stops the interface/application from being closed

PD_ACCESSORIES - Disables miscellaneous accessories (for example, a spectrum analyser)

PD_SCHEDULER - Disables the task scheduler if it exists

PD_PLUGINS - Disables other plug-ins from being started

PD_RXALL - Disables all receiver controls

PD_RXFREQ - Disables receiver frequency setting controls

PD_RXMODE - Disables mode and IF bandwidth controls

PD_RXSLEVEL - Disables the signal meter

PD_RXSQUELCH - Disables squelch controls

PD_RXRFINPUT - Disables RF input selection controls

PD_RXRFGAIN - Disables attenuator and preamplifier controls

PD_RXIFGAIN - Disables AGC and IF gain controls

PD_RXIFSHIFT - Disables IF shift and/or BFO offset controls

PD_RXAFC - Disables the AFC control

PD_RXAUDIO - Disables audio processing controls

PD_RXEXTOSC - Disables the external oscillator control

PD_RXMEMORY - Disables memory controls

PD_RXSCANNER - Disables scanner controls

PD_RXDSP - Disables receiver DSP, record and playback controls

PD_TXALL - Disables all transmitter controls

PD_TXFREQ - Disables transmitter frequency setting controls

PD_TXMODE - Disables transmitter modulation controls

PD_TX - Disables the transmitter activation control

PD_TXINPUT - Disables transmitter input processing controls

PD_TXPOWER - Disables transmitter power controls

PD_TXSETTINGS - Disables transmission type controls

PD_TXEXTOSC - Disables the external oscillator control

PD_TXDSP - Disables transmitter DSP, record and playback controls

lpData

Not used.

Return Value

Zero if the command was successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PN_DISABLED

PM_FILTERFLAGS

The PM_FILTERFLAGS command is sent to the application to inform it that the plug-in notification filtering

is to be changed. Notifications can be added or removed with this command.

Note: This is a software command and is not related to frequency domain filtering.

Parameters

dwParam

PNF_xxx flags. See xrsPluginStart for the list of flags.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

62

lpData

Not used.

Return Value

Zero if the command was successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PM_GETMEM

The PM_GETMEM command is sent to the application to retrieve the contents of a memory record in the

currently active band or folder (if applicable).

Parameters

dwParam

The record number to retrieve.

lpData

Pointer to a MEMORYENTRY structure that will be filled with the memory record.

Return Value

Zero if the memory record was successfully retrieved, otherwise PLUGIN_CB_FAIL is returned.

PM_GETMEMFILE

The PM_GETMEMFILE command is sent to the application to retrieve the name of the active memory file.

Parameters

dwParam

Not used.

lpData

Pointer to a buffer to receive the null-terminated memory file name.

Return Value

Zero if the file name was successfully retrieved, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PM_SETMEMFILE

PN_MEMFILE

PM_GETNEXTFOLDER

The PM_GETNEXTFOLDER command is sent to the application to obtain the next subfolder name after the

specified folder name. Neither folder has to be active.

Support for folders is specified by the presence of the RADIOMEM_FOLDERS flag in the dwMemFeatures

field in the RADIODEVCAPS structure.

Parameters

dwParam

Not used.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

63

lpData

Pointer to a buffer that contains the null-terminated folder name and has to be large enough to receive the

next folder’s name. If the current folder is an empty string, it will retrieve the first subfolder in the root of

the memory.

Refer to PM_OPENFOLDER for details on folder names.

Return Value

Length of the folder name if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PM_GETSUBFOLDER

PM_GETNEXTMEM

The PM_GETNEXTMEM command is sent to the application to obtain the next memory record number that

contains information. It can also return the contents of the record.

Parameters

dwParam

Specifies the record number where the command returns the next available number (ie. record that

contains data). If this is –1, the command returns the first record number that exists in the memory.

lpData

Can be NULL if the contents of the record is not desired.

If it is not NULL, points to a MEMORYENTRY structure that will receive the contents of the next memory

record.

Return Value

If successful, returns the next memory record number that contains information. If there are no more records

then –1 is returned.

PLUGIN_CB_FAIL is returned (0x80000000) if the command fails.

PM_GETNEXTPLUGIN

The PM_GETNEXTPLUGIN command is sent to the application to obtain a list of installed and running plug-

ins in the application.

Parameters

dwParam

Not used.

lpData

Points to a buffer that contains a plug-in name of which the next plug-in will be returned. If the contents

of buffer is just a null-terminator (0), the first plug-in installed will be returned in this buffer. The buffer

should be at least 64 bytes in size to receive the name.

Return Value

If successful, the plug-in type (see xrsPluginInit for plug-in types) and if bit 16 is set (0x10000) the

plug-in is currently running. If the command fails, PLUGIN_CB_FAIL is returned (0x80000000).

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

64

PM_GETNUMMEMS

The PM_GETNUMMEMS command is sent to the application to obtain the number of memory records that

contains information.

Parameters

dwParam

Not used.

lpData

Not used.

Return Value

If successful, returns the number of records in the memory, otherwise PLUGIN_CB_FAIL is returned

(0x80000000).

PM_GETSETTINGS

The PM_GETSETTINGS command is sent to the application to obtain one of the device’s settings. This is

typically used on start-up to obtain the device’s settings (notifications are not sent to a plug-in after starting

unless the setting changes) that the plug-in relies upon.

This function can be called from within the xrsPluginStart function (ie. before a handle to the plug-in

is returned).

Parameters

dwParam

A notification code representing the setting to obtain. See the PNR/T_xxx notifications (not all

notifications are supported, only those that involve device settings) for more information.

lpData

Points to a buffer that may be required depending on the notification code. If a notification requires a

buffer but the size is unknown, this can be set to point to a single DWORD that will receive the size of the

buffer required for full setting information.

This can be NULL if the notification doesn’t use the lpData parameter.

Return Value

If successful, the setting according to the dwParam parameter of the notification, otherwise

PLUGIN_CB_FAIL is returned (0x80000000).

PM_GETSUBFOLDER

The PM_GETSUBFOLDER command is sent to the application to obtain the name of the first subfolder in the

specified folder (if one exists).

Support for folders is specified by the presence of the RADIOMEM_FOLDERS flag in the dwMemFeatures

field in the RADIODEVCAPS structure.

Parameters

dwParam

Not used.

lpData

Pointer to a buffer that contains the null-terminated folder name and has to be large enough to receive the

subfolder’s name. If the current folder is an empty string, it will retrieve the first subfolder in the root of

the memory.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

65

Refer to PM_OPENFOLDER for details on folder names.

Return Value

Length of the folder name if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PM_GETNEXTFOLDER

PM_MINIMIZE

The PM_MINIMIZE command is sent to the application to minimise or restore the application’s user

interface for the device.

Parameters

dwParam

If zero is specified, the interface is restored. If it is non-zero, the interface is minimised.

lpData

Not used.

See Also

PN_MINIMIZED

PM_MOVEFOLDER

The PM_MOVEFOLDER command is sent to the application to move the currently active folder and all its

subfolders to another folder.

Support for folders is specified by the presence of the RADIOMEM_FOLDERS flag in the dwMemFeatures

field in the RADIODEVCAPS structure.

Parameters

dwParam

Not used.

lpData

Pointer to a buffer that contains the null-terminated destination folder name. The current folder cannot be

the root directory and the destination cannot be a subfolder of the active folder.

Refer to PM_OPENFOLDER for details on folder names.

Return Value

Zero if the command was successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PM_OPENFOLDER

The PM_OPENFOLDER command is sent to the application to set the active folder in memory.

Support for folders is specified by the presence of the RADIOMEM_FOLDERS flag in the dwMemFeatures

field in the RADIODEVCAPS structure.

Parameters

dwParam

Not used.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

66

lpData

Points to a null-terminated string that specifies the folder name to open. This can either be a relative path

or an absolute path. Folders operate in a similar way to folders in many file-based operating systems.

Only the back-slash character cannot be used in a folder name (it is reserved for specifying a folder path).

A relative path is a folder name which must be a subfolder of the currently active folder (by default when

a new memory file is opened, the active folder is set to the root). It can contain multiple subfolders where

each folder name is separated by a back-slash.

An absolute path specifies all folder names from the root folder leading to the active folder, where each

folder is separated by a back-slash and the first character is a back-slash (representing the root folder).

For example, ‘Fire\Digital’ is a relative path while ‘\Services\Emergency\Fire\Digital’ is an absolute path.

Return Value

Zero if the folder was successfully opened, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PN_MEMFOLDER

PM_POWER

The PM_POWER command is sent to the application to control the device’s power.

Support for this function is defined by presence of the RADIOCAPS_POWER flag in the dwRxFeatures or

dwTxFeatures field in the RADIODEVCAPS structure.

Parameters

dwParam

If zero is specified, the power is switched off. If it is non-zero, the power is switched on.

lpData

Not used.

Return Value

Zero if the power state was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PN_POWER

PM_RECALLMEM

The PM_RECALLMEM command is sent to the application to apply a memory record’s settings to the device.

Parameters

dwParam

The memory record number to recall.

lpData

Not used.

Return Value

Zero if the memory record was successfully recalled, otherwise PLUGIN_CB_FAIL is returned.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

67

 See Also

PN_MEMRECALL

PM_SELECTBANK

The PM_SELECTBANK command is sent to the application to change the active memory bank.

Support for banks is specified by the presence of the RADIOMEM_BANKS flag in the dwMemFeatures field

in the RADIODEVCAPS structure.

Parameters

dwParam

The bank number from 0 to the value specified by the iNumBanks-1 field of the RADIODEVCAPS

structure.

lpData

Not used.

Return Value

Zero if the bank was successfully selected, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PN_MEMBANK

PM_SETMEMFILE

The PM_SETMEMFILE command is sent to the application to load a different memory file.

Parameters

dwParam

Not used.

lpData

Points to a null-terminated string that specifies the memory file to load.

Return Value

Zero if the file was successfully loaded, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PN_MEMFILE

PM_GETMEMFILE

PM_STARTPLUGIN

The PM_STARTPLUGIN command can start another installed plug-in. To obtain a list of installed plug-ins

(and their types), see the PM_GETNEXTPLUGIN command.

Parameters

dwParam

Not used.

lpData

Points to a null-terminated string that specifies the plug-in name to start.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

68

Return Value

Zero if the plug-in was successfully started, or one if the plug-in was already running, otherwise

PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PN_PLUGINSTARTED

PM_STOPPLUGIN

The PM_STOPPLUGIN command can stop another running plug-in.

Parameters

dwParam

Not used.

lpData

Points to a null-terminated string that specifies the plug-in name to stop.

Return Value

Zero if the plug-in was successfully stopped, or one if the plug-in was not running, otherwise

PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PN_PLUGINSTOPPED

PM_STOREMEM

The PM_STOREMEM command is sent to the application the store the supplied settings into a memory record.

Parameters

dwParam

Specifies the memory record number to store the settings into.

lpData

Pointer to a MEMORYENTRY structure which contains the information to store into the memory.

Return Value

Zero if the record was successfully stored, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PN_MEMCHANGE

PM_VISIBLE

The PM_VISIBLE command sets the application’s user interface for the device to be hidden or shown.

Parameters

dwParam

Non-zero if the window is to be shown, zero if it is to be hidden.

lpData

Not used.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

69

 See Also

PN_VISIBLE

PMR/T_AUDIOFILTER

The PMR_AUDIOFILTER and PMT_AUDIOFILTER commands are sent to the application to control the

receiver’s audio output or transmitter’s audio input filtering. Currently, four filter types are supported: bass,

treble and optional mid-range tone controls; band-pass filter controls, parametric equaliser and graphic

equaliser controls.

The supports for these controls are specified by the presence of the RADIOCAPS_BASSTREBLE (and

RADIOCAPS_MIDRANGE), RADIOCAPS_BPFILTER, RADIOCAPS_PARAMETRIC and/or

RADIOCAPS_EQUALIZER flags in the dwRxFeatures and dwTxFeatures field in the RADIODEVCAPS

structure.

Parameters

dwParam

This can be one of the following filter types:

AUDIOFILTER_NONE - No filtering.

AUDIOFILTER_TONE - Bass, treble and optional mid-range tone filtering.

AUDIOFILTER_BANDPASS - Band-pass filtering.

AUDIOFILTER_PARAMETRIC - Parametric equaliser filtering.

AUDIOFILTER_GRAPHIC - Graphic equaliser filtering.

lpData

Depends on dwParam:

AUDIOFILTER_NONE:

 Not used (can be NULL).

AUDIOFILTER_TONE:

 Pointer to bass and treble DWORDs and a third mid-range level if supported. cbSize can equal

eight or twelve depending on the presence of the mid-range value. The iBassRange,

iTrebleRange and iMidRange fields in the TONECAPS structure define the range for each

respectively. If the RADIOCAL_TONE flag is specified in the dwCalibrated field, then these

values are specified in dB.

AUDIOFILTER_BANDPASS:

 Pointer to a buffer of up to three 32-bit values. The first two values are the high-pass and low-

pass frequencies as 32-bit unsigned integers, with the lowest and highest frequencies specified

by the iMinBpFreq and iMaxBpFreq fields of the RADIODEVCAPS structure. If the high-pass

value is 0 then the filter is a low-pass one.

The optional third value is a 32-bit signed value which is the de-emphasis of the audio filter specified

in 0.1dB/oct steps (the value must be multiplied by 0.1 to obtain the actual de-emphasis value). If

not specified, 0dB/oct is assumed.

If all three parameters are specified, cbData must be set to 12. If only high-pass and low-pass

frequencies are specified, cbData must be set to 8.

Availability depends on the running plug-ins.

AUDIOFILTER_PARAMETRIC:

 Pointer to an array of PARAEQPARAMS structures where for each entry a centre frequency, Q

and level parameters are specified. The iMaxParaPoles field of the PARAEQCAPS structure

defines the maximum number of poles that can be specified. The iMinParaFreq and

iMaxParaFreq fields specify the frequency range for a pole. The iMinParaQ and iMaxParaQ

fields specify the range of Q supported. The iParaLevelRange field defines the maximum level

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

70

(above or below the nominal level), with the adjustment granularity specified by the

iParaLevelStep field.

AUDIOFILTER_GRAPHIC:

 Pointer to an array of DWORDS where for each equaliser frequency specified in the

GRAPHEQCAPS structure, a corresponding level is specified. The iNumFreqs field specifies the

number of frequencies that have to be set. The iLevelRange field defines the maximum level

(above or below the nominal level), with the adjustment granularity specified by the iLevelStep

field.

Return Value

Zero if the filter was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR/T_AUDIOFILTER

PMR/T_DSPADCSTART

The PMR_DSPADCSTART and PMT_DSPADCSTART commands are sent to the application to initiate

‘analog-digital conversion’ of received audio signals. A typical application is to enable audio recording to a

hard disk for playback at a later time.

This function can only be used if the RADIODSP_ADC flag is set in the dwRxDspFeatures and

dwTxDspFeatures field of the RADIODEVCAPS structure.

Parameters

dwParam

Specifies the sampling rate, bits per sample and number of audio channels. The data is always in PCM

format, the left channel before right channel when recording in stereo.

The parameters are specified by combining three RADIODSP_xxx flags, one for the sampling rate, one

for the bits per sample and one for the number of channels (only those specified in dwRxDspFeatures or

dwTxDspFeatures in the RADIODEVCAPS structure can be used). If any extra flags are set or if any flags

are missing, the command will fail.

For example:

RADIODSP_11KHZ + RADIODSP_8BIT + RADIODSP_MONO will initiate an 11.025 kHz, 8

bit, single channel conversion.

Digitised data will automatically be sent to a plug-in with the PNR/T_DSPINBUFFULL notification

(there is no need to call the PMR/T_DSPADDINBUF command).

Call PMR/T_DSPCLOSE when finished, passing the return value from this command in dwParam.

lpData

Not used.

Return Value

A unique ‘DSP handle’ if recording was successfully started, otherwise PLUGIN_CB_FAIL is returned

(0x80000000).

PMR/T_DSPADDINBUF

The PMR_DSPADDINBUF and PMT_DSPADDINBUF commands are sent to the application to receive data

from the DSP in a custom DSP application. This only works after a successful call to PMR/T_DSPSTART.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

71

Parameters

dwParam

The ‘DSP handle’ that was returned from PMR/T_DSPOPEN.

cbData

Specifies the amount of data the plug-in wishes to receive from the DSP. When the buffer is full (or there

is no more data from the DSP), the application issues a PNR/T_DSPINBUFFULL notification.

lpData

NULL.

Return Value

If successful, returns a unique ‘Buffer ID’, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR/T_DSPCLOSE

The PMR_DSPCLOSE and PMT_DSPCLOSE commands are sent to the application to close an active DSP

process.

Parameters

dwParam

A ‘DSP handle’ that was returned from PMR/T_DSPSTART, PMR/T_DSPDACSTART or

PMR/T_DSPADCSTART.

lpData

Not used.

Return Value

Zero if the command was successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR/T_DSPDACSTART

The PMR_DSPDACSTART and PMT_DSPDACSTART commands are sent to the application to initiate

‘digital-analog conversion’ of digitised audio data. A typical application is to enable audio playback from a

hard disk that was recorded at an earlier time.

This function can only be used if the RADIODSP_DAC flag is set in the dwRxDspFeatures or

dwTxDspFeatures field of the RADIODEVCAPS structure respectively.

Parameters

dwParam

Specifies the sampling rate, bits per sample and number of audio channels. The data is always in PCM

format, the left channel before right channel when playback is in stereo.

The parameters are specified by combining three RADIODSP_xxx flags, one for the sampling rate, one

for the bits per sample and one for the number of channels (only those specified in dwDspFeatures can be

used). If any extra flags are set or if any flags are missing, the command will fail.

For example:

RADIODSP_11KHZ + RADIODSP_8BIT + RADIODSP_MONO will initiate an 11.025 kHz, 8

bit, single channel conversion.

To send the data to the DAC/DSP, call the PMR/T_DSPSENDBUF command.

Call PMR/T_DSPCLOSE when finished.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

72

lpData

Not used.

Return Value

A unique ‘DSP handle’ if conversion was successfully started, otherwise PLUGIN_CB_FAIL is returned

(0x80000000).

PMR/T_DSPINPUT

The PMR_DSPINPUT and PMT_DSPINPUT commands are sent to the application to select the DSP/ADC’s

source line.

Parameters

dwParam

Specifies the input number from 0 (the receiver’s demodulator output or transmitter’s audio input) to

iNumRxDspInputs-1 or iNumTxDspInputs-1 specified in the RADIODEVCAPS structure.

lpData

Not used.

Return Value

Zero if the input was successfully selected, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR/T_DSPINPUT

PMR/T_DSPREADBYTE

The PMR_DSPREADBYTE and PMT_DSPREADBYTE commands are sent to the application to read one or

more bytes from the DSP in a custom DSP application. This only works after a successful call to

PMR/T_DSPSTART.

Parameters

dwParam

A ‘DSP handle’ that was returned from PMR/T_DSPSTART.

lpData

NULL if only one byte is to be read, otherwise, points to a buffer where the application will attempt to

read cbData bytes from the DSP.

Return Value

If successful, the command returns the byte read from the DSP if lpData is NULL or returns the number of

bytes read from the DSP if lpData is not NULL. If unsuccessful, PLUGIN_CB_FAIL is returned.

PMR/T_DSPSENDBUF

The PMR_DSPSENDBUF and PMT_DSPSENDBUF commands are sent to the application to send a block of

data to the DSP for processing.

If PMR/T_DSPSTART or PMR/T_DSPDACSTART has not been successfully called, this function will fail.

Parameters

dwParam

A ‘DSP handle’ that was returned from PMR/T_DSPSTART or PMR/T_DSPDACSTART.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

73

lpData

Pointer to a buffer of data to send to the DSP.

Return Value

A ‘Buffer ID’ if successful (this will be returned in the PNR/T_DSPSENDBUFDONE notification to inform

the plug-in when the data has been sent) , otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR/T_DSPSENDBYTE

The PMR_DSPSENDBYTE and PMT_DSPSENDBYTE commands are sent to the application to send one or

more bytes to the DSP for processing. This only works after a successful call to PMR/T_DSPSTART.

Parameters

dwParam

A ‘DSP handle’ that was returned from PMR/T_DSPSTART.

lpData

Points to a buffer that contains several bytes to the DSP, the amount specified by cbData.

Return Value

If successful, the command returns the number of bytes sent, otherwise PLUGIN_CB_FAIL is returned.

PMR/T_DSPSTART

The PMR_DSPSTART and PMT_DSPSTART commands are sent to the application so the plug-in can initiate

a custom DSP application. As this command is DSP dependant, the plug-in should first check the

szRx/TxDspManufacturer and szRx/TxDspProduct fields to make sure that the specified DSP hardware is

supported.

This function can only be used if the RADIODSP_DSP flag is set in the dwRx/TxDspFeatures field of the

RADIODEVCAPS structure.

Call PMR/T_DSPCLOSE when finished.

Parameters

dwParam

Not used.

lpData

Points to a buffer than contains code to load into the DSP. This is DSP specific and is not translated in

any way.

Return Value

A unique ‘DSP handle’ if the DSP code was started successfully, otherwise PLUGIN_CB_FAIL is returned

(0x80000000).

PMR/T_EXTOSC

The PMR_EXTOSC and PMT_EXTOSC commands are sent to the application to control the selection of an

external reference oscillator.

Support for the selectable inputs are specified by the presence of the RADIOCAPS_EXTREFOSC flag in the

dwRxFeatures and dwTxFeatures field in the RADIODEVCAPS structure.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

74

Parameters

dwParam

If zero is specified, the internal reference oscillator is used. If it is non-zero, an external reference

oscillator is used.

lpData

Not used.

Return Value

Zero if the oscillator was successfully selected, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR/T_EXTOSC

PMR/T_FREQ

The PMR_FREQ and PMT_FREQ commands are sent to the application to change the frequency of a receiver

or transmitter without changing the displayed frequency. This can be useful when the receiver or transmitter

is used with ancillary frequency conversion hardware.

Parameters

dwParam

Specifies the frequency to tune to receiver or transmitter to. The first 31 bits is used to specify the

frequency in Hz from 0 to 2.147 GHz. If bit 31 is set (MSB), the value in the first 31 bits is multiplied by

ten, allowing the tuneable frequency range to be from 0 to 21.47 GHz with a minimum resolution of

10 Hz.

The frequency must lie within one of the receiver frequency ranges specified in the RADIODEVCAPS

structure (see the iNumRxFreqRanges and iRxFreqRangeOffset fields for getting supported receiver bands

and iNumTxFreqRanges and iTxFreqRangeOffset fields for supported transmitter bands).

lpData

Not used.

Return Value

Zero if the frequency was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR/T_FREQUENCY

The PMR_FREQUENCY and PMT_FREQUENCY commands are sent to the application to change the

frequency the receiver or transmitter is tuned to respectively. This also updates the appropriate frequency

display.

Parameters

dwParam

Specifies the frequency to tune to receiver or transmitter to. The first 31 bits is used to specify the

frequency in Hz from 0 to 2.147 GHz. If bit 31 is set (MSB), the value in the first 31 bits is multiplied by

ten, allowing the tuneable frequency range to be from 0 to 21.47 GHz with a minimum resolution of

10 Hz.

The frequency must lie within one of the receiver frequency ranges specified in the RADIODEVCAPS

structure (see the iNumRxFreqRanges and iRxFreqRangeOffset fields for getting supported receiver bands

and iNumTxFreqRanges and iTxFreqRangeOffset fields for supported transmitter bands).

lpData

Not used.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

75

Return Value

Zero if the frequency was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR/T_FREQUENCY

PMR_AFC

The PMR_AFC command is sent to the application to control the receiver’s AFC (automatic frequency

control), which is used to lock the receiver to signals whose frequency is unknown or drifting. This feature is

normally only available in FM, FSK and AM-SYNC modes. However in principle, it can be extended to any

mode, given suitable hardware and/or software.

This command is only supported if the RADIORXCAPS_AFC flag is specified in the dwRxFeatures field of

the RADIODEVCAPS structure.

Parameters

dwParam

If zero is specified, AFC is deactivated. If it is non-zero, AFC is activated.

lpData

Not used.

Return Value

Zero if the AFC was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_AFC

PMR_AGC

The PMR_AGC command is sent to the application to control the receiver’s AGC (automatic gain control).

Support for switchable AGC (whether it can be switched off, on and several predefined speeds) is specified

by the presence of the RADIORXCAPS_AGC flag in the dwRxFeatures field in the RADIODEVCAPS

structure.

Support for adjustable AGC time-constants (ie. separate attack, hold and decay adjustments) is specified by

the presence of the RADIORXCAPS_ADJAGC flag.

Parameters

dwParam

If this is zero (RXAGC_OFF), the AGC is deactivated.

If the value is positive, it specifies the overall AGC speed:

RXAGC_MEDIUM

RXAGC_SLOW

RXAGC_FAST

RXAGC_VSLOW

RXAGC_VFAST

Supported AGC speeds are specified by the iAgcSpeeds field of the RADIODEVCAPS structure.

If the value is negative, lpData points to an AGCEXPARAMS structure where the value specified for each

member is defined as follows:

-1: Each of the 3 fields specifies an RXAGC_xxx constant as defined above.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

76

-2: Each of the 3 fields specifies a time for the attack, hold and decay portions of the AGC in

milliseconds. The range for the attack time is specifies by the iMinAgcAttack and iMaxAgcAttack

fields of the AGCEXCAPS structure. iMinAgcHold and iMaxAgcHold specify the range for the hold

time. iMinAgcDecay and iMaxAgcDecay specify the range for the decay time.

lpData

Points to an AGCEXPARAMS structure if dwParam is negative (each part of the AGC envelope is

specified). Otherwise, this parameter is NULL.

Return Value

Zero if the AGC was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_AGC

PMR_ATTEN

The PMR_ATTEN command is sent to the application to control the setting of the receiver’s RF input

attenuator.

Support for the attenuator is specified by the presence of the RADIORXCAPS_ATTEN flag in the

dwRxFeatures field in the RADIODEVCAPS structure.

Parameters

dwParam

Specifies the attenuation level from 0 (no attenuation) to the value specified by the iMaxAtten field in the

RADIODEVCAPS structure. If the RADIOCAL_ATTEN flag is set in the dwCalibrated field, this value is

specified in dB.

Some receivers support discrete attenuation levels (typically multiples of 5 or 6 dB) rather than

continuously adjustable levels. The iAttenStep field in the RADIODEVCAPS structure specifies this

granularity.

If a receiver has only an on/off attenuator, the iMaxAtten and iAttenStep values will be the same. To

switch on the attenuator, this parameter must be iMaxAtten.

lpData

Not used.

Return Value

Zero if the attenuator was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_ATTEN

PMR_AUDIOSRC

The PMR_AUDIOSRC command is sent to the application select the audio source which is applied to the

receiver’s audio output amplifier.

Parameters

dwParam

Specifies the audio source number. The iRxAudioSources field in the RADIODEVCAPS structure defines

the audio sources available for selection, where each bit set represents a supported source.

The defined sources include:

 RXAUDIOSRC_RADIO - receiver demodulator

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

77

 RXAUDIOSRC_EXT - external (line in)

 RXAUDIOSRC_DSP - DSP/DAC

Setting the audio source to RXAUDIOSRC_DSP only works after a successful call to

PMR_DSPADCSTART or PMR_DSPSTART.

lpData

Not used.

Return Value

Zero if the audio output was successfully selected, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_AUDIOSRC

PMR_BALANCE

The PMR_BALANCE command is sent to the application to control the receiver’s audio balance control, if the

receiver supports stereo.

The support for this function is specified by the presence of the RADIORXCAPS_BALANCE flag in the

dwRxFeatures field of the RADIODEVCAPS structure.

Parameters

dwParam

Zero if the balance is centred, positive if the balance is towards the right and negative if towards the left.

The iBalanceRange field in the RADIODEVCAPS structure specifies the maximum range of this

parameter.

If the RADIOCAL_BALANCE flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

value is specified as a multiple of 0.1 dB.

lpData

Not used.

Return Value

Zero if the balance was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_BALANCE

PMR_BANDWIDTH

The PMR_BANDWIDTH command is sent to the application to control the receiver’s IF bandwidth.

Parameters

dwParam

Specifies the IF bandwidth in Hz. The bandwidth range and controllability are defined in the DEMODDEF

array in the RADIODEVCAPS structure, and therefore the bandwidth is dependent on the mode that is set.

If the dwMinIfBw field of the associated mode is –1, then only the dwMaxIfBw value can be set (if there is

more than one definition for a single mode, any of the defined dwMaxIfBw values for the mode can be

set). If dwMaxIfBw is zero, the bandwidth cannot be set or selected.

If the dwMinIfBw field is not zero, any bandwidth value can be set between this minimum and the

maximum defined by dwMaxIfBw with a resolution of dwIfBwStep.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

78

lpData

Not used.

Return Value

Zero if the IF bandwidth was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_BANDWIDTH

PMR_BLOCKSCAN

The PMR_BLOCKSCAN command is sent to the application for it to perform a scan of a specified range of

frequencies, and either record the signal strengths for each frequency step, and/or stop when if finds a signal

which equals or exceeds a predefined signal strength.

Parameters

dwParam

The low word specifies the scan rate in steps per second.

The high word specifies the squelch level, a value of -1 will make the application scan all frequencies

regardless of the signal strength.

The iMaxScanRate field of the DEMODDEF for the current mode defines the maximum scan rate.

lpData

Points to an array of 32-bit integers where each entry specifies a frequency to scan. When the function is

finished (by a PNR_SCANFINISHED notification), the signal strengths will be returned in the

notification’s lpData parameter.

Return Value

Zero if block scan was successfully started, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PMR_STOPSCAN

PMR_DEMODSIGNAL

The PMR_DEMODSIGNAL command can be sent only by demodulator plug-ins. It sends a buffer of

samples from a specific point in the demodulator for other plug-ins that might need it. Samples can be

modified to implement extra signal processings like audio signal conditioning.

Parameters

dwParam

A constant specifying the demodulator point where the samples have been obtained.

DEMODSIGNAL_IF IF input

DEMODSIGNAL_IQ I and Q samples before filtering

DEMODSIGNAL_IQ_FILTERED I and Q samples after filtering

DEMODSIGNAL_AUDIO audio output

DEMODSIGNAL_IF_FLOAT IF input samples as 32-bit floating point values

DEMODSIGNAL_IQ_FLOAT IQ input samples as 32-bit floating point values before

filtering

DEMODSIGNAL_IQ_FILTERED_FLOAT IQ input samples as 32-bit floating point values after

filtering but before AGC

DEMODSIGNAL_IQ_FILTAGC_FLOAT IQ input samples as 32-bit floating point values after

AGC

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

79

DEMODSIGNAL_AUDIO_FLOAT Audio output as 32-bit floating point values

DEMODSIGNAL_DDC DDC stream as integer values

cbData

The amount of memory occupied by the structure containing the samples.

lpData

Pointer to the structure containing the samples, DEMODSIGNALDATA.

PMR_DFANGLE

(used in WD-3300-G315 system)

The PMR_DFANGLE command sends measured signal direction to the XRS server.

Parameters

dwParam

contains the averaging result in 0.01deg steps in the lower 16 bits and the display offset in 0.01deg steps

in the upper 16 bits.

cbData

size of DF_ANGLE_STRUCT

lpData

Pointer to DF_ANGLE_STRUCT structure.

Comments

The DF_ANGLE_STRUCT is sent only when DF is enabled. See PMR_DF_START.

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_DFANGLEMODE

(used in WD-3300-G315 system)

The PMR_DFANGLEMODE command sets the measured signal direction notification mode.

Parameters

dwParam

If zero, the <-180,+180> angle mode is used. Otherwise, <0,360> mode is used.

cbData

Not used.

lpData

Not used.

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_DFAVGENABLE

(used in WD-3300-G315 system)

The PMR_DFAVGENABLE command turns DF averaging on or off.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

80

Parameters

dwParam

If it is non-zero the AVG is enabled, if it is zero AVG is disabled.

cbData

Not used.

lpData

Not used.

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_DFAVGLENGTH

(used in WD-3300-G315 system)

The PMR_DFAVGLENGTH command sets the averaging buffer length in Direction Finding system.

Parameters

dwParam

AVG length

cbData

Not used.

lpData

Not used.

PMR_DFCOMPASS

(used in WD-3300-G315 system)

The PMR_DFCOMPASS command turns the compass usage on or off

Parameters

dwParam

If it is non-zero the compass is used, if it is zero no compass is used.

cbData

Not used.

lpData

Not used.

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_DFCOMPASSOFFSET

(used in WD-3300-G315 system)

The PMR_DFCOMPASSOFFSET command sets the compass offset for Direction Finding system.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

81

Parameters

dwParam

The compass offset in degrees, multiplied by 100.

cbData

Not used.

lpData

Not used.

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_DFCOMPASSPITCH

(used in WD-3300-G315 system)

The PMR_DFCOMPASSPITCH command sends the compass pitch to the XRS server.

Parameters

dwParam

Pitch value in 0.01 deg.

cbData

Not used.

lpData

Not used.

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_DFCOMPASSROLL

(used in WD-3300-G315 system)

The PMR_DFCOMPASSROLL command sends the actual compass roll to the XRS server.

Parameters

dwParam

Compass roll value in 0.01 deg

cbData

Not used.

lpData

Not used.

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_DFRPS

(used in WD-3300-G315 system)

The PMR_DFRPS command sets the RPS to the direction finding system.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

82

Parameters

dwParam

RPS

cbData

Not used.

lpData

Not used. Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_DFSTART

(used in WD-3300-G315 system)

The PMR_DFSTART command turns on or off the Direction Finding

Parameters

dwParam

If zero, the direction finding is turned off. Otherwise it is turned on.

cbData

Not used.

lpData

Not used.

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_GPSPOS

The PMR_GPSPOS command sends the currently detected GPS position to the XRS server.

Parameters

dwParam

Not used

cbData

Size of GPS_POSITION structure

lpData

Pointer to GPS_POSITION structure.

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_IFGAIN

The PMR_IFGAIN command is sent to the application to control the receiver’s IF gain.

Support for adjustable IF gain is specified by the presence of the RADIORXCAPS_IFGAIN flag in the

dwFeatures field in the RADIODEVCAPS structure.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

83

Parameters

dwParam

Specifies the IF gain level. This value can be negative (attenuated) or positive (amplified), with the limits

specified by the iMinIfGain and iMaxIfGain values in the RADIODEVCAPS structure.

If the RADIOCAL_IFGAIN flag is set in the dwCalibrated field of the RADIODEVCAPS structure, the

gain is specified in dB.

If the RADIORXCAPS_AGCMAXGAIN is set and the AGC is active, the value limits the maximum gain

which can be achieved by AGC action.

lpData

Not used.

Return Value

Zero if the IF gain was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_IFGAIN

PMR_IFSHIFT

The PMR_IFSHIFT command is sent to the application to control the receiver’s IF shift according to the

current mode (or other mode if a mode is specified).

Parameters

dwParam

Specifies the IF shift in Hz. The available range of IF shift depends on the mode and the associated

dwMaxIfShift field in the DEMODDEF structure. If the mode doesn’t support IF shift, the dwMaxIfShift is

set to zero.

lpData

If this is not NULL, then it points to a DWORD value that specifies the mode the IF shift is to be applied

to. The mode is not set, but the IF shift level is stored in the application, and will be set when that mode is

selected. cbData is set to four (or sizeof(DWORD)) if this is used.

Return Value

Zero if the IF shift was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_IFSHIFT

PMR_IFSPECTRUM

The PMR_IFSPECTRUM command is sent by a digital demodulator plug-in to the application to provide the

spectrum resulted from the IF input signal. When receiving this command, the application, apart from using

it, must send PNR_IFSPECTRUM notifications to all plug-ins.

Parameters

dwParam

Not used

cbData

The amount of memory occupied by the IF spectrum samples.

lpData

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

84

Pointer to the vector of IF spectrum samples. Each sample is stored using 32-bit unsigned integers with

(2^32-1) corresponding to the maximum possible level.

PMR_LOUD

The PMR_LOUD command is sent to the application to select or deselect the receiver’s audio output loudness

compensation features, if available.

Support for loudness compensation is specified by the presence of the RADIORXCAPS_LOUD flag in the

dwFeatures field in the RADIODEVCAPS structure.

Parameters

dwParam

Zero if loudness compensation is off, non-zero if it is on.

Loudness compensation usually boosts bass and treble frequencies at low volume levels, with the amount

of boost reducing as the volume is increased.

lpData

Not used.

Return Value

Zero if loudness compensation was successfully set, otherwise PLUGIN_CB_FAIL is returned

(0x80000000).

 See Also

PNR_LOUD

PMR_MODE

The PMR_MODE command is sent to the application to change the receiver’s demodulation mode.

Parameters

dwParam

The mode to set the receiver to:

RADIOMODE_CW - Continuous Wave

RADIOMODE_LSB - Lower Side Band

RADIOMODE_USB - Upper Side Band

RADIOMODE_AM - Amplitude Modulation (non-synchronous)

RADIOMODE_SAM - Amplitude Modulation (synchronous)

RADIOMODE_FMN - Frequency Modulation, Narrow (typ. 0 - 25 kHz)

RADIOMODE_FMM - Frequency Modulation, Medium (typ. 25 - 100 kHz)

RADIOMODE_FMW - Frequency Modulation, Wide (typ. > 100 kHz)

RADIOMODE_FSK - Frequency Shift Keying

RADIOMODE_DAB - Digital Audio Broadcasting

RADIOMODE_FM3 - Frequency modulation with 3 kHz deviation

RADIOMODE_FM6 - Frequency modulation with 6 kHz deviation

RADIOMODE_AMN - Narrow bandwidth amplitude modulation

RADIOMODE_ISB - Double side band amplitude modulation with supressed carrier

RADIOMODE_DSB - Independent side band amplitude modulation with supressed carrier

RADIOMODE_PM - Phase Modulation

RADIOMODE_AMSU - Amplitude Modulation (synchronous, upper sideband)

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

85

RADIOMODE_AMSL - Amplitude Modulation (synchronous, lower sideband)

RADIOMODE_DRM - Digital Radio Mondial

RADIOMODE_APCO - APCO P25 digital decoder

RADIOMODE_UDM - User Defined Mode

The modes that the device supports are specified by the DEMODDEF array that is defined by the

iNumRxModes and iRxModeListOffset fields in the RADIODEVCAPS structure.

Note that the IF bandwidth is specified by a separate command (PMR_BANDWIDTH).

lpData

Not used.

Return Value

Zero if the mode was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_MODE

PMR_MODEXDATA

The PMR_MODEXDATA command is sent to the application to control any supported mode-dependent

extended features.

Parameters

dwParam

Depends on the mode the device is set to:

RADIOMODE_CW - BFO offset (up +/- dwMaxExData)

RADIOMODE_FMN,
RADIOMODE_FMM,

RADIOMODE_FMW - Base bandwidth

RADIOMODE_DAB - Digital audio broadcasting standard

others are reserved or not used.

For each supported extended setting, the dwMaxExData defines the maximum value(s) or range in the

associated DEMODDEF structure.

lpData

Not used.

Return Value

Zero if the extended settings were successfully set, otherwise PLUGIN_CB_FAIL is returned.

 See Also

PNR_MODEXDATA

PMR_MONO

The PMR_MONO command is sent to the application to force mono reception, when the hardware supports

automatic mono/stereo switching.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

86

Parameters

dwParam

Zero for automatic mono/stereo switching (or for default behaviour), non-zero to force mono.

lpData

Not used.

Return Value

Zero if the command was successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_MONO

PMR_MUTE

The PMR_MUTE command is sent to the application to force muting of the receiver’s audio output signal.

Parameters

dwParam

If this is zero, the output is not forcibly muted. If it is non-zero, the output is muted.

Note that this command does not override hardware muting which may be provided within the receiver

for specific purposes, such as rendering inaudible any PLL lockup transients.

lpData

Not used.

Return Value

Zero if the mute was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_MUTE

PMR_NOISEBLANKER

The PMR_NOISEBLANKER command is sent to the application to control the operation of the receiver’s

internal noise blanker.

Support for this function is specified by the presence of the RADIORXCAPS_NOISEBLANKER flag in the

dwFeatures field of the RADIODEVCAPS structure.

Parameters

dwParam

Zero if the noise blanker is to be deactivated, -1 if the noise blanker is to be set to auto-mode.

A positive number specifies the noise blanker threshold where the maximum threshold is defined by the

iMaxNbThreshold field of the RADIODEVCAPS structure.

lpData

Not used.

Return Value

Zero if the noise blanker was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

87

 See Also

PNR_NOISEBLANKER

PMR_NOISEREDUCT

The PMR_NOISEREDUCT command is sent to the application to control the operation of the receiver’s noise

reduction feature if it exists.

Support for this function is specified by the presence of the RADIORXCAPS_NOISEREDUCT flags in the

dwFeatures field of the RADIODEVCAPS structure.

Parameters

dwParam

Zero if noise reduction is to be deactivated, otherwise it is a positive number where each value specifies a

different type of noise reduction system. The iMaxNoiseReduction field of the RADIODEVCAPS structure

defines the maximum value.

lpData

Not used.

Return Value

Zero if noise reduction command was successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_NOISEREDUCT

PMR_NOTCH

The PMR_NOTCH command is sent to the application to control the operation of the receiver’s notch filter. It

controls both an automatic notch and a manual notch filter.

Whether an auto and/or manual notch is supported is by the presence of the RADIORXCAPS_AUTONOTCH

and/or RADIORXCAPS_MANUALNOTCH flags in the dwRxFeatures field of the RADIODEVCAPS structure.

Parameters

dwParam

If set to zero, the notch filter is off. If set to –1, the automatic notch filter is enabled. If set to a positive

number, the manual notch is enabled with the notch set at this value in Hz. The iMaxNotchFreq field of

the RADIODEVCAPS structure defines the maximum frequency.

lpData

Not used.

Return Value

Zero if the notch filter was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_NOTCH

PMR_PREAMP

The PMR_PREAMP command is sent to the application to control the setting of the receiver’s RF

preamplifier.

Support for the preamplifier is specified by the presence of the RADIORXCAPS_PREAMP flag in the

dwFeatures field in the RADIODEVCAPS structure.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

88

Parameters

dwParam

Specifies the amplification level from 0 (no amplification) to the value specified by the iMaxPreamp field

in the RADIODEVCAPS structure. If the RADIOCAL_ATTEN flag is set in the dwCalibrated field, this

value is specified in dB.

Most receivers support discrete amplification levels (typically multiples 9 or 12 dB) rather than

continuously adjustable levels. The iPreampStep field in the RADIODEVCAPS structure specifies this

granularity.

If a receiver has only an on/off preamplifier, the iMaxPreamp and iPreampStep values will be the same

(and to switch on the preamplifier, this parameter must be iMaxPreamp).

lpData

Not used.

Return Value

Zero if the preamplifier was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_PREAMP

PMR_RECORDING

(used in G313 and G315)

The PMR_RECORDING command tells the XRS server to start or stop recording.

Parameters

dwParam

The signal type to record, see PNR_DEMODSIGNAL params.

cbData

Size of RECORDINGPARAMS structure

lpData

Pointer to a RECORDINGPARAMS structure.

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_RFINPUT

The PMR_RFINPUT command is sent to the application to select which antenna to use if the receiver has

more than one selectable antenna connector.

Parameters

dwParam

Specifies the antenna input number from 0. The number of inputs if defined by the iNumRfInputs field in

the RADIODEVCAPS structure.

On some receivers, each input receives a defined frequency range that may or may not cover the entire

frequency range. If an input is selected that does not correspond correctly to the current receiver

frequency, the quality of reception may be less than optimal. To obtain information on which inputs to

use according to frequency, the FREQRANGE array defines each frequency range and which antenna

input(s) the range can use.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

89

lpData

Not used.

Return Value

Zero if the antenna input was successfully selected, otherwise PLUGIN_CB_FAIL is returned.

 See Also

PNR_RFINPUT

PMR_SIGNALPARAMS

The PMR_SIGNALPARAMS command sends measured signal parameters to the XRS server.

Parameters

dwParam

Not used

cbData

Size of SIGNAL_PARAMS structure

lpData

Pointer to SIGNAL_PARAMS structure

Return Value

Zero if successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_SQUELCH

The PMR_SQUELCH command is sent to the application to set the receiver’s squelch parameters.

Parameters

dwParam

Specifies an array of bits which indicate the type of squelch:

RXSQUELCH_SLEVEL – signal level

RXSQUELCH_NLEVEL – noise squelch

RXSQUELCH_CTCSS – CTCSS tone

RXSQUELCH_SYLLABIC – syllabic squelch

RXSQUELCH_DTMF – DTMF tone burst

RXSQUELCH_2TONE – 2-tone burst

RXSQUELCH_5TONE – 5-tone burst

RXSQUELCH_DPL – DPL

RXSQUELCH_VOICE – Voice

RXSQUELCH_DCS – DCS

all other bits are reserved

The iSquelchFeatures field of the RADIODEVCAPS structure specifies supported squelch methods.

lpData

Points to a SQUELCHSETTINGS structure that contains the squelch parameters. Only those fields that

correspond to the above set bits have to be set.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

90

Return Value

Zero if the squelch parameters were successfully set, otherwise PLUGIN_CB_FAIL is returned.

 See Also

PNR_SQUELCH

PNR_SQUELCHED

PMR_STOPSCAN

The PMR_STOPSCAN command is sent to the application to abort a block scan that has been started (with the

PMR_BLOCKSCAN command).

Parameters

dwParam

Not used.

lpData

This can be NULL if the data is not required.

Alternatively, it can point to an array of 32-bit integers that will be filled by the application with all the

signal levels for the frequencies that had been scanned since the most recent PMR_BLOCKSCAN

command. The size of the array should be at least equal to the size specified in the call to

PMR_BLOCKSCAN.

Return Value

The number of frequencies that had been scanned since the most recent PMR_BLOCKSCAN command,

otherwise PLUGIN_CB_FAIL is returned (0x80000000).

PMR_TRACKID

The PMR_TRACKID command is sent to the application to control the receiver’s trunk tracking capabilities.

To use this feature, a PMR_TRUNKFREQ command must be issued to enable trunk decoding. Support for

trunk tracking is specified by the presence of the RADIORXCAPS_TRUNKING flag in the dwRxFeatures

field of the RADIODEVCAPS structure.

Parameters

dwParam

Specifies the radio ID to track, -1 if no tracking is to be performed.

lpData

Not used.

Return Value

Zero if the trunk tracking ID was successfully set, otherwise PLUGIN_CB_FAIL is returned.

PMR_TRUNKFREQ

The PMR_TRUNKFREQ command is sent to the application to control the receiver’s trunk decoding and

tracking capabilities. Support for trunk tracking is specified by the presence of the

RADIORXCAPS_TRUNKING flag in the dwRxFeatures field of the RADIODEVCAPS structure.

To track a particular radio, use the PMR_TRACKID command.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

91

Parameters

dwParam

Specifies the trunking system’s control frequency in Hz. If zero is specified, the trunking feature is

disabled.

lpData

Not used.

Return Value

Zero if the trunking frequency was successfully set, otherwise PLUGIN_CB_FAIL is returned.

 See Also

PNR_TRUNKFREQ

PNR_TRUNKID

PMR_VOLUME

The PMR_VOLUME command is sent to the application to control the setting of the receiver output volume

control.

Parameters

dwParam

Specifies the volume setting from zero to the maximum value, defined by the iMaxVolume field, in

iVolumeStep steps.

If the RADIOCAL_VOLUME flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

value is specified in dB.

lpData

Not used.

Return Value

Zero if the volume was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNR_VOLUME

PMT_ANTIVOX

The PMT_ANTIVOX command is sent to the application to change the transmitter’s anti-vox gain.

Support for anti-vox adjustment is specified by the presence of the RADIOTXCAPS_ANTIVOX flag in the

dwTxFeatures field of the RADIODEVCAPS structure.

Parameters

dwParam

Specifies the anti-vox gain from 0 to iMaxAntiVox specified in the RADIODEVCAPS structure.

If the RADIOCAL_ANTIVOX flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

value is specified in dB.

lpData

Not used.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

92

Return Value

Zero if the anti-vox gain was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNT_ANTIVOX

PMT_AUDIOPROC

The PMT_AUDIOPROC command is sent to the application to select the desired form of audio processing for

the transmitter.

Parameters

dwParam

Currently, three bits are defined specifying which audio processing features are enabled:

 TXAUDIOPROC_COMP - Compression

 TXAUDIOPROC_CLIP - Clipping

 TXAUDIOPROC_AGC - AGC

The iAudioProcFlags field of the RADIODEVCAPS structure specifies the audio processing features that

are supported by the transmitter.

lpData

Points to a TXAUDIOPROC structure specifying the characteristics of each enabled processing feature.

Return Value

Zero if the audio processing features were successfully set, otherwise PLUGIN_CB_FAIL is returned.

 See Also

PNT_AUDIOPROC

PMT_MODE

The PMT_MODE command is sent to the application to control the transmitter’s modulation parameters.

Parameters

dwParam

The low-word contains the mode to set the transmitter to:

RADIOMODE_CW - Continuous Wave

RADIOMODE_LSB - Lower Side Band

RADIOMODE_USB - Upper Side Band

RADIOMODE_AM - Amplitude Modulation (non-synchronous)

RADIOMODE_FMN - Frequency Modulation, Narrow (typ. 0 - 25 kHz)

RADIOMODE_FMM - Frequency Modulation, Medium (typ. 25 - 100 kHz)

RADIOMODE_FMW - Frequency Modulation, Wide (typ. > 100 kHz)

RADIOMODE_FSK - Frequency Shift Keying

RADIOMODE_DAB - Digital Audio Broadcasting

RADIOMODE_FM3 - Frequency modulation with 3 kHz deviation

RADIOMODE_FM6 - Frequency modulation with 6 kHz deviation

RADIOMODE_AMN - Narrow bandwidth amplitude modulation

RADIOMODE_ISB - Double side band amplitude modulation with supressed carrier

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

93

RADIOMODE_DSB - Independent side band amplitude modulation with supressed carrier

The modes that the transmitter supports are specified by the MODDEF array that is defined by the

iNumTxModes and lpTxModeDefs fields in the RADIODEVCAPS structure.

If the transmitter supports a secondary sub-carrier, the high-word contains the mode (as above) for the

sub-carrier. If the high-word is zero, a sub-carrier is not transmitted.

lpData

Points to a MODPARAMS structure that defines where to find the mode dependant information.

Each mode has a different set of parameters. The following parameters are defined for each mode:

CW: Not used.

LSB, USB: dw…Param1 specifies the ‘peak envelope power’. The dwMaxParam1 field in the

MODDEF structure specifies the maximum limit.

 If the RADIOCAL_SSBMODPEP flag is set in the dwCalibrated field of the

RADIODEVCAPS structure, this value is specified as a percentage of the max.

AM: Pointer to a single DWORD that specifies the ‘modulation depth’. The maximum

limit is specifies by the dwMaxParam1 field in the MODDEF structure.

 If the RADIOCAL_AMMODDEPTH flag is set in the dwCalibrated field of the

RADIODEVCAPS structure, this value is specified as a percentage of the max.

FMN, FMM: dw…Param1 specifies the maximum frequency deviation either side of the carrier,

and dw…Param2 specifies the base bandwidth of the audio.

 If the RADIOCAL_FMDEV flag is set in the dwCalibrated field of the

RADIODEVCAPS structure, the dw…Param1 field is specified in Hz.

FMW: dw…Param1 and dw…Param2 are the same as the other, while the rest of the fields

are unique to FMW.

 The dw…Param3 field specifies the frequency of the pilot tone for stereo

transmissions (0 is specified for mono), the maximum defined by the dwMaxParam3

field of the MODDEF structure. If the RADIOCAL_FMWPILOTTONE flag is

specified in the dwCalibrated field, then this value is in Hz.

FSK: The dw…Param1 field specifies the lower frequency of the FSK transmission. The

dw…Param2 field specifies the frequency shift. The dw…Param3 field specifies the

baud rate and dw…Param4 specifies the frequency shift ‘shaping’.

DAB: The dw…Param1 field specifies the digital audio broadcasting standard:

0 = Eureka 147

1 = IBOC

2 = WordSpace

3 = DRM

The dwSeconaryCarrierFreq field specifies the sub-carrier frequency relative to the main transmitter

frequency in Hz (use zero for the default sub-carrier offset for the mode).

Return Value

Zero if the power level was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNT_MODE

PMT_MODSRC

The PMT_MODSRC is sent to the application to connect the transmitter’s modulator input to a different

source.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

94

Parameters

dwParam

Specifies the source number. The iTxModSources field in the RADIODEVCAPS structure defines the

sources that can be selected, where each bit set represents a supported source.

The low-word specifies the primary modulation source and the high-word specifies the sub-carrier

modulation source. The transmitter supports sub-carriers if the RADIOTXCAPS_SUBCARRIER flag is

set in the dwTxFeatures field of the RADIODEVCAPS structure.

The defined sources include:

 TXMODSRC_MIC - Microphone

 TXMODSRC_EXT - External audio signal (from line-in connector)

 TXMODSRC_DSP - Signal supplied from computer via DAC and/or DSP

 TXMODSRC_KEY - Morse key

 TXMODSRC_MISC1 - Miscellaneous depending on transmitter (eg. internal digital modulator)

 TXMODSRC_MISC2 - Another miscellaneous input (eg. a dedicated circuit function)

Setting the modulation source to TXMODSRC_DSP only works after a successful call to

PMR/T_DSPADCSTART or PMR/T_DSPSTART.

lpData

Not used.

Return Value

Zero if the source was successfully selected, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNT_MODSRC

PMT_RFPOWER

The PMT_RFPOWER command is sent to the application to control the transmitter’s peak output power.

Parameters

dwParam

Specifies the transmitter’s peak output power from 0 (no power) to iMaxTxPower.

If the RADIOCAL_TXPOWER flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

value is specified in mW (milliwatts).

lpData

Not used.

Return Value

Zero if the power level was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNT_RFPOWER

PMT_SELCALL

The PMT_SELCALL command is sent to the application to specify squelch and selective calling parameters

of the transmission.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

95

Parameters

dwParam

Specifies the selective calling type:

 TXSELCALL_NORMAL - normal audio (no selective calling)

 TXSELCALL_CTCSS - a CTCSS tone continuously superimposed on normal audio

 TXSELCALL_SINGLE - a single tone burst followed by normal audio

 TXSELCALL_DTMF - a DTMF burst followed by normal audio

 TXSELCALL_2TONE - a two tone sequential burst followed by normal audio

 TXSELCALL_5TONE - a five tone sequential burst followed by normal audio

 TXSELCALL_DPL - audio with a DPL burst (digital private line)

The iTxSelCallTypes field in the RADIODEVCAPS structure defines the selective calling types that are

supported.

lpData

Depends on dwParam:

 TXSELCALL_NORMAL: not used.

 TXSELCALL_CTCSS: points to a SELCALL_CTCSS structure:

 dwToneFreq Tone frequency in mHz (1000
th

’s of Hz).

 dwToneLevel From 0 (silent) to iMaxToneLevel.

 TXSELCALL_SINGLE: points to a SELCALL_SINGLE structure:

 dwSotFreq Tone frequency in Hz at start of transmission.

 dwEotFreq Tone frequency in Hz at end of transmission.

 dwToneLevel From 0 (silent) to iMaxToneLevel.

 dwToneDuration Duration of tone transmitted in milliseconds (up to iMaxToneDuration).

 TXSELCALL_DTMF: points to a SELCALL_DTMF structure:

 dwDtmfTone DTMF tone pair number from 0 to 15.

 dwToneLevel From 0 (silent) to iMaxToneLevel.

 dwToneDuration Duration of tones transmitted in milliseconds (up to iMaxToneDuration).

 TXSELCALL_2TONE: points to a SELCALL_TWOTONE structure:

 dwToneFreq1 Specifies the initial tone frequency in Hz.

 dwToneFreq2 Specifies the second tone frequency in Hz.

 dwToneLevel From 0 (silent) to iMaxToneLevel.

 dwReserved

 TXSELCALL_5TONE: points to a SELCALL_FIVETONE structure:

 dwToneFreqs[5] An array of five frequencies specifies the sequential five tones in Hz.

 dwToneLevel From 0 (silent) to iMaxToneLevel.

 dwReserved

 TXSELCALL_DPL: points to a SELCALL_DPL structure:

 dwReserved

Return Value

Zero if the squelch and selective calling parameters were successfully set, otherwise PLUGIN_CB_FAIL is

returned.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

96

 See Also

PNT_SELCALL

PMT_TX

The PMT_TX command is sent to the application to activate or deactivate the transmitter.

Parameters

dwParam

Non-zero to enter transmit mode, zero to deactivate the transmitter.

lpData

Not used.

Return Value

Zero if the command was successful, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNT_TX

PMT_XMTCTL

The PMT_XMTCTL command is sent to the application to select the transmitter’s method of activation.

Parameters

dwParam

The low-word specifies a bit array where the specified combination of enabled initiators can activate the

transmitter.

TXINITIATE_MICSWITCH - manual activation by microphone switch

TXINITIATE_SECONDARY - manual activation by secondary switch (eg. foot-switch)

TXINITIATE_SOFTWARE - manual activation by software (see PMT_TX command)

TXINITIATE_VOX - voice activated

The transmitter activates when one or more conditions exist.

The iTxInitiators field in the RADIODEVCAPS structure defines the initiators that are supported.

The high-word specifies the transmitter release delay from 0 (immediate release) to iTxMaxReleaseDelay.

If the RADIOCAL_TXRELEASE flag is set in the dwCalibrated field, this value is in milliseconds.

lpData

Not used.

Return Value

Zero if the initiator was successfully set, otherwise PLUGIN_CB_FAIL is returned (0x80000000).

 See Also

PNT_XMTCTL

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

97

XRS Notifications

If a notification passes a non-NULL pointer in the lpData parameter and the plug-in wishes to keep the data

after the notification returns, the contents must be copied to local storage. Upon returning from the

notification, any memory allocated for lpData is freed.

There are four classes of notifications: ones that apply only to receivers (PNR_xxx), ones that apply only to

transmitters (PNT_xxx), global and those that apply to neither (PN_xxx).

PN_CAPABILITIES

The PN_CAPABILITIES message informs the plug-in that the capabilities of the receiver changed due to

another plug-in starting/stopping. The plug-in must be able to handle the changes that affect it without

restarting.

Parameters

dwParam

Not used.

cbData

The amount of memory occupied by the new RADIODEVCAPS structure.

lpData

Pointer to the new RADIODEVCAPS.

PN_CLOSE

 The PN_CLOSE message notifies the plug-in that it must shutdown. This notification cannot be filtered out.

Parameters

dwParam

Zero if sent from the application (usually from user initiation) or non-zero if from another plug-in (from a

PM_STOPPLUGIN command).

lpData

Not used.

 See Also

PM_CLOSED

PN_DISABLED

The PN_DISABLED message notifies the plug-in when any discrete part of the application interface changes

its status, where the parts can be enabled or disabled.

Parameters

dwParam

An array of flags where each flag set represents that feature disabled. See the PM_DISABLE command

for more information.

lpData

Not used.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

98

PN_MEMBANK

The PN_MEMBANK message notifies the plug-in when the active frequency memory bank has changed.

Parameters

dwParam

Specifies the active bank number from 0 to iNumBanks-1 specified in the RADIODEVCAPS structure.

lpData

Not used.

See Also

PM_SELECTBANK

PN_MEMCHANGE

The PN_MEMCHANGE message notifies the plug-in when a frequency memory record is modified.

Parameters

dwParam

Specifies the record number that was changed.

lpData

Points to a MEMORYENTRY structure that contains the settings for the modified frequency memory

record.

 See Also

PM_STOREMEM

PN_MEMFILE

The PN_MEMFILE message notifies the plug-in when a new frequency memory file is loaded.

Parameters

dwParam

Not used.

lpData

Points to a null-terminated string that specifies the loaded frequency memory file.

See Also

PM_SETMEMFILE

PM_GETMEMFILE

PN_MEMFOLDER

The PN_MEMFOLDER message notifies the plug-in when the active folder has changed.

Parameters

dwParam

Not used.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

99

lpData

Points to a null-terminated string that specifies the active folder.

 See Also

PM_OPENFOLDER

PN_MEMRECALL

The PN_MEMRECALL message notifies the plug-in when the device recalls settings from a frequency

memory record.

Parameters

dwParam

Specifies the record number recalled from 0 or 1 to dwMaxRecords specified in the RADIODEVCAPS

structure.

lpData

Not used.

 See Also

PM_RECALLMEM

PN_MINIMIZED

The PN_MINIMIZED message notifies the plug-in when the device’s window is minimised or restored.

Parameters

dwParam

Non-zero if the window is minimised, zero if it is restored (or maximised).

lpData

Not used.

 See Also

PM_MINIMIZE

PN_PLUGINSTARTED

The PN_PLUGINSTARTED message notifies the plug-in when another plug-in is started.

Parameters

dwParam

Specifies the plug-in type (the value returned from xrsPluginInit).

lpData

Points to a null-terminated string that specifies the plug-in that was started.

 See Also

PM_STARTPLUGIN

PN_PLUGINSTOPPED

The PN_PLUGINSTOPPED message notifies the plug-in when another plug-in has closed.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

100

Parameters

dwParam

Specifies the plug-in type (the value returned from xrsPluginInit).

lpData

Points to a null-terminated string that specifies the plug-in that was stopped.

 See Also

PM_STOPPLUGIN

PN_POWER

The PN_POWER message notifies the plug-in when the power state of the device changes.

Parameters

dwParam

Non-zero when the device is powered up, zero when the device is powered down.

lpData

Not used.

 See Also

PM_POWER

PN_SERVERLISTEN

(used in G313 CSO and G315 CSO)

The PN_SERVERLISTEN command tells the XRS server to be prepared to accept incoming network

connections.

Parameters

dwParam

Not used.

cbData

Size of CLIENTSERVER structure

lpData

Pointer to a CLIENTSERVER structure.

PN_VISIBLE

The PN_VISIBLE message notifies the plug-in when the device’s window is hidden or shown (usually

under a plug-in’s control).

Parameters

dwParam

Non-zero if the window is shown, zero if it is hidden.

lpData

Not used.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

101

 See Also

PM_VISIBLE

PNR/T_AUDIOFILTER

The PNR_AUDIOFILTER and PNT_AUDIOFILTER messages notifies the plug-in when audio filter

settings are changed, and applies to both receivers and transmitters.

Parameters

dwParam

This can be one of the following filter types:

AUDIOFILTER_NONE - No filtering.

AUDIOFILTER_TONE - Bass, treble and optional mid-range tone filtering.

AUDIOFILTER_BANDPASS - Band-pass filtering.

AUDIOFILTER_PARAMETRIC - Parametric equaliser filtering.

AUDIOFILTER_GRAPHIC - Graphic equaliser filtering.

lpData

Depends on dwParam:

AUDIOFILTER_NONE:

 Not used (will be NULL).

AUDIOFILTER_TONE:

 Pointer to bass and treble DWORDs and a third mid-range level if supported. cbSize can equal

eight or twelve depending on the presence of the mid-range value. If the RADIOCAL_TONE flag

is specified in the dwCalibrated field, then these values are specified in dB.

AUDIOFILTER_BANDPASS:

 Pointer to a low-pass and high-pass frequency in Hz. Both these values are DWORDs and

therefore cbSize must be set to eight. The lowest and highest frequencies are specified by the

iMinBpFreq and iMaxBpFreq fields of the RADIODEVCAPS structure.

AUDIOFILTER_PARAMETRIC:

 Pointer to an array of PARAEQPARAMS structures where for each entry a centre frequency, Q

and level parameters are specified.

AUDIOFILTER_GRAPHIC:

 Pointer to an array of DWORDS where for each equaliser frequency specified in the

GRAPHEQCAPS structure, a corresponding level is specified. The number of frequencies that are

in the array is specified by the iNumFreqs field.

 See Also

PMR/T_AUDIOFILTER

PNR/T_DSP

The PNR_DSP and PNT_DSP messages notifies the plug-in when the ADC, DAC and/or DSP activation

status changes.

Parameters

dwParam

Bit:

RADIODSP_DAC - digital-analog conversion (from computer to DSP)

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

102

RADIODSP_ADC - analog-digital conversion (from DSP to computer)

RADIODSP_DSP - other DSP function (activated by another plug-in or in an application specific

instance)

lpData

Not used.

 See Also

PMR/T_DSPDACSTART

PMR/T_DSPADCSTART

PMR/T_DSPSTART

PNR/T_DSPINBUFFULL

The PNR_DSPINBUFFULL and PNT_DSPINBUFFULL messages notifies the plug-in when a requested

read from the DSP has been completed. This can be issued from a PMR/T_DSPADCSTART or

PMR/T_DSPADDINBUF command. This notification cannot be filtered out.

Parameters

dwParam

Specifies the ‘Buffer ID’ returned from PMR/T_DSPADDINBUF or zero if the message is from a

PMR/T_DSPADCSTART command.

lpData

Points to a buffer that contains the data from the DSP.

PNR/T_DSPINPUT

The PNR_DSPINPUT and PNT_DSPINPUT messages notifies the plug-in when the DSP/ADC’s input

selection has changed.

Parameters

dwParam

Specifies the input number from 0 (the receiver’s demodulator output or transmitter’s input) to

iNumRx/TxDspInputs-1 specified in the RADIODEVCAPS structure.

lpData

Not used.

 See Also

PMR/T_DSPINPUT

PNR/T_DSPREQREAD

The PNR_DSPREQREAD and PNT_DSPREQREAD messages notifies the plug-in of a DSP generated read

request (ie. the DSP has data to send to the plug-in). The plug-in should issue a PMR/T_DSPADDINBUF

command in response. This notification cannot be filtered out.

Parameters

dwParam

Specifies the ‘DSP handle’ returned from PMR/T_DSPSTART.

cbData

Specifies the size of the buffer the DSP requested in bytes.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

103

lpData

Not used.

PNR/T_DSPREQSEND

The PNR_DSPREQSEND and PNT_DSPREQSEND messages notifies the plug-in of a DSP generated send

request (ie. the DSP wants to receive data). The plug-in should issue a PMR/T_DSPSENDBUF command in

response. This notification cannot be filtered out.

Parameters

dwParam

Specifies the ‘DSP handle’ returned from PMR/T_DSPSTART.

cbData

Specifies the size of the buffer the DSP requested in bytes.

lpData

Not used.

PNR/T_DSPREQUEST

The PNR_DSPREQUEST and PNT_DSPREQUEST messages notifies the plug-in of a DSP generated request.

The value is plug-in defined and the notification cannot be filtered out.

Parameters

dwParam

Specifies the ‘DSP handle’ returned from PMR/T_DSPSTART.

lpData

Points to a DWORD that contains the DSP notification code.

PNR/T_DSPSENDBUFDONE

The PNR_DSPSENDBUFDONE and PNT_DSPSENDBUFDONE messages notifies the plug-in when the

PMR/T_DSPSENDBUF command has completed (ie. all the data in the buffer has been sent to the DSP).

This notification cannot be filtered out.

Parameters

dwParam

Specifies the ‘Buffer ID’ returned from the PMR/T_DSPSENDBUF command.

lpData

Not used.

PNR/T_EXTOSC

The PNR_EXTOSC and PNT_EXTOSC messages notifies the plug-in when the reference oscillator source is

switched.

Parameters

dwParam

Zero if the internal reference oscillator is used, one if the device is switched to an external reference

oscillator.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

104

lpData

Not used.

 See Also

PMR/T_EXTOSC

PNR/T_FREQUENCY

The PNR_FREQUENCY and PNT_FREQUENCY messages notifies the plug-in when the receiver’s or

transmitter’s frequency has changed.

Parameters

dwParam

Specifies the frequency the device is tuned to. The first 31 bits is used to specify the frequency (from 0 to

2.147 GHz). If bit 31 set (MSB), the value in the first 31 bits is multiplied by ten allowing the tuneable

frequency range from 0 to 21.47 GHz (and minimum resolution of 10 Hz).

lpData

Not used.

 See Also

PMR/T_FREQUENCY

PMR/T_FREQ

PNR_AFC

The PNR_AFC message notifies the plug-in when the receiver’s AFC is activated or deactivated.

Parameters

dwParam

Zero if the AFC is deactivated, non-zero if it is activated.

lpData

Not used.

 See Also

PMR_AFC

PNR_AGC

The PNR_AGC message notifies the plug-in when the receiver’s AGC settings have changed.

Parameters

dwParam

If this is zero (RXAGC_OFF), the AGC is deactivated.

If the value is positive, it specifies the overall AGC speed:

RXAGC_MEDIUM

RXAGC_SLOW

RXAGC_FAST

RXAGC_VSLOW

RXAGC_VFAST

If the value is negative, lpData points to an AGCEXPARAMS structure where the value specified for each

member is defined as follows:

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

105

-1: Each of the 3 fields specifies an RXAGC_xxx constant as defined above.

-2: Each of the 3 fields specifies a time for the attack, hold and decay portions of the AGC in

milliseconds. The range for the attack time is specifies by the iMinAgcAttack and iMaxAgcAttack

fields of the AGCEXCAPS structure. iMinAgcHold and iMaxAgcHold specify the range for the hold

time. iMinAgcDecay and iMaxAgcDecay specify the range for the decay time.

lpData

Points to an AGCEXPARAMS structure if dwParam is negative (each part of the AGC envelope is

specified). Otherwise, this parameter is not used.

 See Also

PMR_AGC

PNR_ATTEN

The PNR_ATTEN message notifies the plug-in when the receiver’s RF input attenuator status has changed.

Parameters

dwParam

Specifies the current RF input attenuation.

If the RADIOCAL_ATTEN flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

value is specified in dB.

lpData

Not used.

 See Also

PMR_ATTEN

PNR_AUDIOSRC

The PNR_AUDIOSRC message notifies the plug-in when the receiver’s audio amplifier is switched to a

different audio signal source.

Parameters

dwParam

Specifies the audio source number. The iRxAudioSources field in the RADIODEVCAPS structure defines

the available audio sources, where each bit set represents a supported source.

The defined sources include:

 RXAUDIOSRC_RADIO - receiver demodulator

 RXAUDIOSRC_EXT - external (line in)

 RXAUDIOSRC_DSP - DSP/DAC

lpData

Not used.

 See Also

PMR_AUDIOSRC

PNR_BALANCE

The PNR_BALANCE message notifies the plug-in when the receiver’s right/left audio balance setting

changes.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

106

Parameters

dwParam

Zero if the balance is centred, positive if the balance is towards the right and negative if towards the left.

The iBalanceRange field in the RADIODEVCAPS structure specifies the maximum range of this

parameter.

If the RADIOCAL_BALANCE flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

value is specified as the difference in dB between the right and left channels.

lpData

Not used.

 See Also

PMR_BALANCE

PNR_BANDWIDTH

The PNR_BANDWIDTH message notifies the plug-in when the receiver’s IF bandwidth has changed.

Parameters

dwParam

Specifies the receiver’s IF bandwidth in Hz for the current receiver mode. Each mode has independent IF

bandwidth settings.

lpData

Not used.

 See Also

PMR_BANDWIDTH

PNR_CHANNELSCANNED

(used in G315)

The PNR_CHANNELSCANNED message notifies plugins about a live channel found during a memory scan.

Parameters

dwParam

Not used.

cbData

size of CHANNEL_SCANNED structure, in bytes

lpData

Pointer to CHANNEL_SCANNED structure

PNR_DEMODSIGNAL

The PNR_DEMODSIGNAL message dispatches buffers with samples from various points in digital

demodulators, either for study or supplementary signal processing. If the plug-in is modifying the samples in

the buffer, the new samples will be used for further processing by the XRS server.

This feature is intended for plug-ins that provide a record/playback facility, or implement extra audio

processing features. The list of available demodulator points is receiver model and loaded demodulator plug-

in dependent.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

107

Parameters

dwParam

A constant specifying the demodulator point where the samples have been obtained.

DEMODSIGNAL_IF IF input

DEMODSIGNAL_IQ I and Q samples before filtering

DEMODSIGNAL_IQ_FILTERED I and Q samples after filtering

DEMODSIGNAL_AUDIO audio output

DEMODSIGNAL_IF_FLOAT IF input samples as 32-bit floating point values

DEMODSIGNAL_IQ_FLOAT IQ input samples as 32-bit floating point values before

filtering

DEMODSIGNAL_IQ_FILTERED_FLOAT IQ input samples as 32-bit floating point values after

filtering but before AGC

DEMODSIGNAL_IQ_FILTAGC_FLOAT IQ input samples as 32-bit floating point values after

AGC

DEMODSIGNAL_AUDIO_FLOAT Audio output as 32-bit floating point values

DEMODSIGNAL_DDC DDC stream as integer values

cbData

 The amount of memory occupied by the structure containing the samples.

lpData

 Pointer to the structure containing the samples, DEMODSIGNALDATA.

PNR_DFANGLE

(used in WD-3300-G315 system)

The PNR_DFANGLE message notifies the plug-in about signal direction detected by the system.

Parameters

dwParam

contains the averaging result in 0.01deg steps in the lower 16 bits and the display offset in 0.01deg steps

in the upper 16 bits.

cbData

size of DF_ANGLE_STRUCT

lpData

Pointer to DF_ANGLE_STRUCT structure.

Comments

The DF_ANGLE_STRUCT is sent only when DF is enabled. See PMR_DF_START.

PNR_DFANGLEMODE

(used in WD-3300-G315 system)

The PNR_DFANGLEMODE message notifies about signal direction notification mode.

Parameters

dwParam

If zero, the <-180,+180> angle mode is used. Otherwise, <0,360> mode is used.

cbData

Not used.

lpData

Not used.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

108

PNR_DFAVGENABLE

(used in WD-3300-G315 system)

The PNR_DFAVGENABLE message notifies the plug-in whether DF averaging enabled or not.

Parameters

dwParam

If it is non-zero the AVG is enabled, if it is zero AVG is disabled.

cbData

Not used.

lpData

Not used.

PNR_DFAVGLENGTH

(used in WD-3300-G315 system)

The PNR_DFAVGLENGTH message notifies the plug-in about AVG length.

Parameters

dwParam

AVG length

cbData

Not used.

lpData

Not used.

PNR_DFCOMPASS

(used in WD-3300-G315 system)

The PNR_DFCOMPASS message notifies the plug-in about usage of the compass.

Parameters

dwParam

If it is non-zero the compass is used, if it is zero no compass is used.

cbData

Not used.

lpData

Not used.

PNR_DFCOMPASSOFFSET

(used in WD-3300-G315 system)

The PNR_DFCOMPASSOFFSET message notifies about compass offset set in the Direction Finding system.

Parameters

dwParam

The compass offset in degrees, multiplied by 100.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

109

cbData

Not used.

lpData

Not used.

PNR_DFCOMPASSPITCH

(used in WD-3300-G315 system)

The PNR_DFCOMPASSPITCH message notifies plugins about the compass pitch.

Parameters

dwParam

Pitch value in 0.01 deg.

cbData

Not used.

lpData

Not used.

PNR_DFCOMPASSROLL

(used in WD-3300-G315 system)

The PNR_DFCOMPASSROLL message notifies plugins about the compass roll.

Parameters

dwParam

Compass roll value in 0.01 deg

cbData

Not used.

lpData

Not used.

PNR_DFRPS

(used in WD-3300-G315 system)

The PNR_DFRPS message notifies the plug-in about the change of the RPS.

Parameters

dwParam

RPS

cbData

Not used.

lpData

Not used.

PNR_DFSTART

(used in WD-3300-G315 system)

The PNR_DFSTART message notifies about turning the Direction Finding on or off.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

110

Parameters

dwParam

If zero, the direction finding is turned off. Otherwise it is turned on.

cbData

Not used.

lpData

Not used.

PNR_GPSPOS

(used in WD-3300-G315 system)

The PNR_GPSPOS message notifies the plug-in about the GPS position detected by the system.

Parameters

dwParam

Not used

cbData

Size of GPS_POSITION structure

lpData

Pointer to GPS_POSITION structure.

PNR_IFGAIN

The PNR_IFGAIN message notifies the plug-in when the manual IF gain level is changed.

Parameters

dwParam

Specifies the current IF gain level. This value can be either negative (attenuated) or positive (amplified),

with the limits specified by the iMinIfGain and iMaxIfGain values in the RADIODEVCAPS structure.

If the RADIOCAL_IFGAIN flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

value is specified in dB.

If the RADIORXCAPS_AGCMAXGAIN is set and the AGC is active, this value limits the maximum gain

that can be achieved by AGC action.

lpData

Not used.

 See Also

PMR_IFGAIN

PNR_IFSHIFT

The PNR_IFSHIFT message notifies the plug-in when the receiver’s IF shift has changed. This only applies

to the current receiver mode. The IF shift value can be different for each mode. This message is not sent

when the current mode doesn’t support IF shift (which can be determined from the receiver’s DEMODDEF

array in the RADIODEVCAPS structure).

Parameters

dwParam

Specifies the IF shift value in Hz.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

111

lpData

Not used.

 See Also

PMR_IFSHIFT

PNR_IFSPECTRUM

The PNR_IFSPECTRUM message notifies the plug-in that a digital demodulator plugin sent to the

application the spectrum of its IF input signal. The plug-in must not affect the spectrum samples.

Parameters

dwParam

Not used

cbData

The amount of memory occupied by the IF spectrum samples.

lpData

Pointer to the vector of IF spectrum samples. Each sample is stored using 32-bit unsigned integers with

(2^32-1) corresponding to the maximum possible level.

PNR_LOUD

The PNR_LOUD message notifies the plug-in when the receiver’s loudness compensation status changes.

Parameters

dwParam

Zero if loudness compensation is off, non-zero if it is on.

Loudness compensation usually boosts bass and treble frequencies at low volume levels, with the amount

of boost reducing as the volume is increased.

lpData

Not used.

 See Also

PMR_LOUD

PNR_MODE

The PNR_MODE message notifies the plug-in when the receiver’s mode has changed.

Parameters

dwParam

The mode the receiver is set to:

RADIOMODE_CW - Continuous Wave

RADIOMODE_LSB - Lower Side Band

RADIOMODE_USB - Upper Side Band

RADIOMODE_AM - Amplitude Modulation (non-synchronous)

RADIOMODE_SAM - Amplitude Modulation (synchronous)

RADIOMODE_FMN - Frequency Modulation, Narrow (typ. 0 - 25 kHz)

RADIOMODE_FMM - Frequency Modulation, Medium (typ .25 - 100 kHz)

RADIOMODE_FMW - Frequency Modulation, Wide (typ. > 100 kHz)

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

112

RADIOMODE_FSK - Frequency Shift Keying

RADIOMODE_DAB - Digital Audio Broadcasting (see PMT_MODE for supported standards)

RADIOMODE_FM3 - Frequency modulation with 3 kHz deviation

RADIOMODE_FM6 - Frequency modulation with 6 kHz deviation

RADIOMODE_AMN - Narrow bandwidth amplitude modulation

RADIOMODE_ISB - Double side band amplitude modulation with supressed carrier

RADIOMODE_DSB - Independent side band amplitude modulation with supressed carrier

RADIOMODE_RDS - FMW with RDS sub-carrier decoding

RADIOMODE_MBS - FMW with MBS sub-carrier decoding

RADIOMODE_RBDS - FMW with RBDS sub-carrier decoding

lpData

Not used.

 See Also

PMR_MODE

PNR_MODEXDATA

The PNR_MODEXDATA message notifies the plug-in when the receiver’s extended data for the current mode

has changed.

Parameters

dwParam

Depends on the mode the device is set to:

RADIOMODE_CW - BFO offset (up +/- dwMaxExData)

RADIOMODE_FMN,
RADIOMODE_FMM,

RADIOMODE_FMW - Base bandwidth

RADIOMODE_DAB - DAB standard (see PMT_MODE for supported standards)

others are reserved or not used.

lpData

Not used.

 See Also

PMR_MODEXDATA

PNR_MONO

The PNR_MONO message notifies the plug-in when the mono/stereo status of the receiver changes.

Parameters

dwParam

Zero if the received transmission is mono, 1 if it is a stereo transmission and -1 if the output is forced to

mono (regardless of received transmission).

This message is only received if the receiver supports stereo reception (RADIORXCAPS_STEREO and/or

RADIORXCAPS_FMWSTEREO).

lpData

Not used.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

113

 See Also

PMR_MONO

PNR_MUTE

The PNR_MUTE message notifies the plug-in when the receiver’s mute status changes.

Parameters

dwParam

Zero if the audio output is not muted, non-zero if it is.

lpData

Not used.

 See Also

PMR_MUTE

PNR_NOISEBLANKER

The PNR_NOISEBLANKER message notifies the plug-in when the receiver’s noise blanker status has

changed.

Parameters

dwParam

Zero if the noise blanker is deactivated, -1 if the noise blanker is set to auto-mode.

A positive number specifies the noise blanker threshold where the maximum threshold is defined by the

iMaxNbThreshold field of the RADIODEVCAPS structure.

lpData

Not used.

 See Also

PMR_NOISEBLANKER

PNR_NOISEREDUCT

The PNR_NOISEREDUCT message notifies the plug-in when the receiver’s noise reduction filter status has

changed.

Parameters

dwParam

Zero if noise reduction is deactivated, otherwise it is a positive number where each value specifies a

different type of noise reduction system. The iMaxNoiseReduction field of the RADIODEVCAPS structure

defines the maximum value.

lpData

Not used.

 See Also

PMR_NOISEREDUCT

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

114

PNR_NOTCH

The PN_NOTCH message notifies the plug-in when the receiver’s notch filter settings have changed.

Parameters

dwParam

Zero if the notch is turned off, -1 if the auto-notch is enabled or a positive value specifying the manual

notch filter’s frequency.

lpData

Not used.

 See Also

PMR_NOTCH

PNR_PREAMP

The PNR_PREAMP message notifies the plug-in when the setting of the receiver’s RF preamplifier has

changed.

Parameters

dwParam

Specifies the receiver’s RF preamplifier gain.

If the RADIOCAL_PREAMP flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

value is specified in dB.

lpData

Not used.

 See Also

PMR_PREAMP

PNR_RECORDING

(used in G313 and G315)

The PNR_RECORDING message notifies plugins about a started or stopped recording.

Parameters

dwParam

The signal type to record, see PNR_DEMODSIGNAL params.

cbData

Size of RECORDINGPARAMS structure

lpData

Pointer to a RECORDINGPARAMS structure.

PNR_RFINPUT

The PNR_RFINPUT message notifies the plug-in when the receiver’s RF input selection has changed.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

115

Parameters

dwParam

Specifies the current RF input number from 1 to iNumRfInputs defined in the RADIODEVCAPS structure.

Specifying zero will select the first antenna that corresponds to the current frequency.

lpData

Not used.

 See Also

PMR_RFINPUT

PNR_SCANFINISHED

The PNR_SCANFINISHED message notifies the plug-in that a PMR_BLOCKSCAN command that was issued

has been completed. This notification cannot be filtered out.

Parameters

dwParam

Specifies the index of the frequency at which scanning stopped at. If all frequencies were scanned without

stopping, then this will be –1.

lpData

Points to an array of DWORDs where each entry is the signal strength for the corresponding frequency

passed in the PMR_BLOCKSCAN command.

PNR_SCANNER

The PNR_SCANNER message notifies the plug-in when the receiver’s scanner status changes.

Parameters

dwParam

RADIOSCAN_IDLE - not scanning

RADIOSCAN_SCANNING - scanning

RADIOSCAN_PAUSED - paused

lpData

Not used.

PNR_SIGNALPARAMS

The PNR_SIGNALPARAMS message notifies plugins about measured signal parameters.

Parameters

dwParam

Not used

cbData

Size of SIGNAL_PARAMS structure

lpData

Pointer to SIGNAL_PARAMS structure

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

116

PNR_SLEVEL

The PNR_SLEVEL message notifies the plug-in what the currently received signal strength is. Typically, this

is called at regular intervals to keep the plug-in updated with the latest signal level (even if it has not

changed).

Parameters

dwParam

The current received signal strength. This can be an arbitrary value from 0 to a maximum or in actual

dBm. If the reading is in dBm, the RADIOCAL_SLEVEL flag is set in the dwCalibrated field of the

RADIODEVCAPS structure.

cbData

The current received RAW signal stregth. This is 8-bit value obtained from DAC.

lpData

Not used.

PNR_SLEVELDBM

The PNR_SLEVELDBM message notifies the plug-in what the currently received signal strength is. Typically,

this is called at regular intervals to keep the plug-in updated with the latest signal level (even if it has not

changed).

Parameters

dwParam

The current received signal strength in dBm regardless if the RADIOCAL_SLEVEL flag is set in the

dwCalibrated field of the RADIODEVCAPS structure.

cbData

Not used.

lpData

Not used.

PNR_SQUELCH

The PNR_SQUELCH message notifies the plug-in when the squelch settings have changed.

Parameters

dwParam

Specifies an array of bits that indicate what controls the squelch:

RXSQUELCH_SLEVEL – signal level

RXSQUELCH_NLEVEL – noise squelch

RXSQUELCH_CTCSS – CTCSS tone

RXSQUELCH_SYLLABIC – syllabic squelch

RXSQUELCH_DTMF – DTMF tone burst

RXSQUELCH_2TONE – 2-tone burst

RXSQUELCH_5TONE – 5-tone burst

RXSQUELCH_DPL – DPL

other bits are reserved

lpData

Pointer to SQUELCHSETTINGS structure. Only those fields that correspond to the above set bits are

valid (the others are undefined).

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

117

 See Also

PMR_SQUELCH

PNR_SQUELCHED

The PNR_SQUELCHED message notifies the plug-in when the squelch status changes.

Parameters

dwParam

Zero if the squelch is not active, non-zero if it is active.

lpData

Not used.

PNR_TRACKID

The PNR_TRACKID notification is sent to the plug-in when the receiver’s trunk tracking status has changed.

Parameters

dwParam

Specifies the radio ID that is being tracked, -1 if no tracking is being performed.

lpData

Not used.

 See Also

PMR_TRACKID

PNR_TRUNKFREQ

The PNR_TRUNKFREQ notification is sent to the plug-in when the receiver’s trunk control frequency has

changed.

Parameters

dwParam

Specifies the trunking system’s control frequency in Hz. If zero is specified, the trunking feature is

disabled.

lpData

Not used.

 See Also

PMR_TRUNKFREQ

PNR_TRUNKID

The PNR_TRUNKID notification is sent to the plug-in when a trunk ID is decoded and no tracking is being

performed.

Parameters

dwParam

Specifies the decoded trunking radio ID. This value can be used in the PMR_TRACKID command to track

the radio.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

118

lpData

Not used.

PNR_VOLUME

The PNR_VOLUME message notifies the plug-in when the receiver’s volume level has changed.

Parameters

dwParam

Specifies the audio volume setting from 0 to iMaxVolume specified in the RADIODEVCAPS structure.

If the RADIOCAL_VOLUME flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

value is specified in dB.

lpData

Not used.

 See Also

PMR_VOLUME

PNT_ANTIVOX

The PNT_ANTIVOX message notifies the plug-in when the transmitter’s anti-vox gain has changed.

Parameters

dwParam

Specifies the anti-vox gain from 0 to iMaxAntiVox specified in the RADIODEVCAPS structure.

If the RADIOCAL_ANTIVOX flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

value is specified in dB.

lpData

Not used.

 See Also

PMT_ANTIVOX

PNT_AUDIOPROC

The PNT_AUDIOPROC message notifies the plug-in when the audio input processing of the transmitter has

changed.

Parameters

dwParam

Currently, three bits are defined specifying which audio processing features are enabled:

 TXAUDIOPROC_COMP - Compression

 TXAUDIOPROC_CLIP - Clipping

 TXAUDIOPROC_AGC - AGC

lpData

This will point to a TXAUDIOPROC structure specifying the characteristics of each enabled processing

feature.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

119

 See Also

PMT_AUDIOPROC

PNT_MEASUREMENT

The PNT_MEASUREMENT message notifies the plug-in of various measurements which may be performed

on the transmitter.

Parameters

dwParam

0: VSWR in 0.01 increments

1: Forward & reverse voltage from a directional coupler.

2: Forward & reverse power in mW

3: Power amplifier collector current in mA

4: Heatsink temperature in 0.1°C increments

5: Power amplifier supply voltage in mV

6: ALC voltage in mV

lpData

Depends on dwParam:

0: A DWORD value that specifies the current VSWR (Voltage Standing Wave Ratio) to two decimal

places (therefore the minimum value is 100 = 1.00).

1: Two DWORD values that specify the forward and reverse voltage. The 1
st
 DWORD specifies the

forward voltage and the 2
nd

 DWORD specifies the reverse (reflected) voltage.

2: Two DWORD values that specify the forward and reverse power in mW. The 1
st
 DWORD specifies

the forward power and the 2
nd

 DWORD specifies the reverse (reflected) power.

3: A DWORD value that specifies the amplifier’s output transistor collector current in mA.

4: A DWORD value that specifies the amplifier’s heatsink temperature in °C to one decimal place

(therefore 562 represents 56.2°C).

5: A DWORD value that specifies the amplifier’s supply voltage in mV.

6: A DWORD value that specifies the ALC (auto-level control) voltage from an external high-power

amplifier in mV.

PNT_MODE

The PNT_MODE notification is sent to the plug-in when the transmitter’s modulation parameters change.

Parameters

dwParam

The low-word contains the mode the transmitter is set to:

RADIOMODE_CW - Continuous Wave

RADIOMODE_LSB - Lower Side Band

RADIOMODE_USB - Upper Side Band

RADIOMODE_AM - Amplitude Modulation (non-synchronous)

RADIOMODE_FMN - Frequency Modulation, Narrow (typ. 0 - 25 kHz)

RADIOMODE_FMM - Frequency Modulation, Medium (typ. 25 - 100 kHz)

RADIOMODE_FMW - Frequency Modulation, Wide (typ. > 100 kHz)

RADIOMODE_FSK - Frequency Shift Keying

RADIOMODE_DAB - Digital Audio Broadcasting

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

120

RADIOMODE_FM3 - Frequency modulation with 3 kHz deviation

RADIOMODE_FM6 - Frequency modulation with 6 kHz deviation

RADIOMODE_AMN - Narrow bandwidth amplitude modulation

RADIOMODE_ISB - Double side band amplitude modulation with supressed carrier

RADIOMODE_DSB - Independent side band amplitude modulation with supressed carrier

The modes that the transmitter supports are specified by the MODDEF array that is defined by the

iNumTxModes and iTxModeListOffset fields in the RADIODEVCAPS structure.

If the transmitter supports a secondary sub-carrier, the high-word contains the mode (as above) for the

sub-carrier. If the high-word is zero, a sub-carrier is not transmitted.

lpData

Points to a MODPARAMS structure that defines where to find the mode dependant information.

Each mode has a different set of parameters. The following parameters are defined for each mode:

CW: Not used.

LSB, USB: dw…Param1 specifies the ‘peak envelope power’. The dwMaxParam1 field in the

MODDEF structure specifies the maximum limit.

 If the RADIOCAL_SSBMODPEP flag is set in the dwCalibrated field of the

RADIODEVCAPS structure, this value is specified as a percentage of the max.

AM: Pointer to a single DWORD that specifies the ‘modulation depth’. The maximum

limit is specifies by the dwMaxParam1 field in the MODDEF structure.

 If the RADIOCAL_AMMODDEPTH flag is set in the dwCalibrated field of the

RADIODEVCAPS structure, this value is specified as a percentage of the max.

FMN, FMM: dw…Param1 specifies the maximum frequency deviation either side of the carrier,

and dw…Param2 specifies the base bandwidth of the audio.

 If the RADIOCAL_FMDEV flag is set in the dwCalibrated field of the

RADIODEVCAPS structure, the dw…Param1 field is specified in Hz.

FMW: dw…Param1 and dw…Param2 are the same as the other, while the rest of the fields

are unique to FMW.

 The dw…Param3 field specifies the frequency of the pilot tone for stereo

transmissions (0 is specified for mono), the maximum defined by the dwMaxParam3

field of the MODDEF structure. If the RADIOCAL_FMWPILOTTONE flag is

specified in the dwCalibrated field, then this value is in Hz.

FSK: The dw…Param1 field specifies the lower frequency of the FSK transmission. The

dw…Param2 field specifies the frequency shift. The dw…Param3 field specifies the

baud rate and dw…Param4 specifies the frequency shift ‘shaping’.

DAB: The dw…Param1 field specifies the digital audio broadcasting standard:

0 = Eureka 147

1 = IBOC

2 = WordSpace

3 = DRM

The dwSeconaryCarrierFreq field specifies the sub-carrier frequency relative to the main transmitter

frequency in Hz (use zero for the default sub-carrier offset for the mode).

 See Also

PMT_MODE

PNT_MODSRC

The PNT_MODSRC notification is sent to the plug-in when the transmitter’s modulator input is connected to a

different source.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

121

Parameters

dwParam

Specifies the source number. The iTxModSources field in the RADIODEVCAPS structure defines the

sources that can be selected, where each bit set represents a supported source.

The low-word specifies the primary modulation source and the high-word specifies the sub-carrier

modulation source. The receiver supports sub-carriers if the RADIOTXCAPS_SUBCARRIER flag is set in

the dwTxFeatures field of the RADIODEVCAPS structure.

The defined sources include:

 TXMODSRC_MIC - Microphone

 TXMODSRC_EXT - External audio signal (from line-in connector)

 TXMODSRC_DSP - Signal supplied from computer via DAC and/or DSP

 TXMODSRC_KEY - Morse key

 TXMODSRC_MISC1 - Miscellaneous depending on transmitter (eg. internal digital modulator)

 TXMODSRC_MISC2 - Another miscellaneous input (eg. a dedicated circuit function)

lpData

Not used.

 See Also

PMT_MODSRC

PNT_RFPOWER

The PNT_RFPOWER notification is sent to the plug-in when the transmitter’s peak output power setting has

changed.

Parameters

dwParam

Specifies the transmitter’s peak output power from 0 (no power) to iMaxTxPower.

If the RADIOCAL_TXPOWER flag is set in the dwCalibrated field of the RADIODEVCAPS structure, this

value is specified in mW (milliwatts).

lpData

Not used.

 See Also

PMT_RFPOWER

PNT_SELCALL

The PNT_SELCALL notification is sent to the plug-in when the squelch and selective calling parameters of

the transmission have changed.

Parameters

dwParam

Specifies the selective calling type:

 TXSELCALL_NORMAL - normal audio (no selective calling)

 TXSELCALL_CTCSS - a CTCSS tone continuously superimposed on normal audio

 TXSELCALL_SINGLE - a single tone burst followed by normal audio

 TXSELCALL_DTMF - a DTMF burst followed by normal audio

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

122

 TXSELCALL_5TONE - a five tone sequential burst followed by normal audio

 TXSELCALL_DPL - audio with a DPL burst (digital private line)

The iTxSelCallTypes field in the RADIODEVCAPS structure defines the selective calling types that are

supported.

lpData

Depends on dwParam:

 TXSELCALL_NORMAL: not used.

 TXSELCALL_CTCSS: points to a SELCALL_CTCSS structure:

 dwToneFreq Tone frequency in mHz (1000
th

’s of Hz).

 dwToneLevel From 0 (silent) to iMaxToneLevel.

 TXSELCALL_SINGLE: points to a SELCALL_SINGLE structure:

 dwSotFreq Tone frequency in Hz at start of transmission.

 dwEotFreq Tone frequency in Hz at end of transmission.

 dwToneLevel From 0 (silent) to iMaxToneLevel.

 dwToneDuration Duration of tone transmitted in milliseconds (up to iMaxToneDuration).

 TXSELCALL_DTMF: points to a SELCALL_DTMF structure:

 dwDtmfTone DTMF tone pair number from 0 to 15.

 dwToneLevel From 0 (silent) to iMaxToneLevel.

 dwToneDuration Duration of tones transmitted in milliseconds (up to iMaxToneDuration).

 TXSELCALL_2TONE: points to a SELCALL_TWOTONE structure:

 dwToneFreq1 Specifies the initial tone frequency in Hz.

 dwToneFreq2 Specifies the second tone frequency in Hz.

 dwToneLevel From 0 (silent) to iMaxToneLevel.

 dwReserved

 TXSELCALL_5TONE: points to a SELCALL_FIVETONE structure:

 dwToneFreqs[5] An array of five frequencies specifies the sequential five tones in Hz.

 dwToneLevel From 0 (silent) to iMaxToneLevel.

 dwReserved

 TXSELCALL_DPL: points to a SELCALL_DPL structure:

 dwReserved

 See Also

PMT_SELCALL

PNT_TX

The PNT_TX message notifies the plug-in when the transmitter is activated.

Parameters

dwParam

Non-zero when the device enters transmit mode, zero if the device’s transmitter deactivates.

lpData

Not used.

WiNRADiO Software Developer’s Guide - The Plug-in Interface (XRS v1.3)

123

 See Also

PMT_TX

PNT_XMTCTL

The PNT_XMTCTL notification is sent to the plug-in when the transmitter’s method of activation has

changed.

Parameters

dwParam

The low-word specifies a bit array where the specified combination of enabled initiators can activate the

transmitter.

TXINITIATE_MICSWITCH - manual activation by microphone switch

TXINITIATE_SECONDARY - manual activation by secondary switch (eg. foot-switch)

TXINITIATE_SOFTWARE - manual activation by software (see PMT_TX command)

TXINITIATE_VOX - voice activated

The transmitter activates when one or more conditions exist.

The iTxInitiators field in the RADIODEVCAPS structure defines the initiators that are supported.

The high-word specifies the transmitter release delay from 0 (immediate release) to iTxMaxReleaseDelay.

If the RADIOCAL_TXRELEASE flag is set in the dwCalibrated field, this value is in milliseconds.

lpData

Not used.

 See Also

PMT_XMTCTL

	Limited Evaluation License
	Confidential Information
	Limited Warranty
	Limitation of Liability
	Trademarks
	Copyrights

	XRS 1.3
	Contents
	Introduction
	XRS Plug-in Basics
	How Plug-ins Work
	Overview of Plug-in Structure

	XRS Development Overview
	Conventions
	Writing Plug-ins
	Registering Plug-ins
	Initialisation
	C/C++:
	Delphi:
	C/C++:
	Delphi:
	C/C++:
	Delphi:

	Device Information
	Instance Destruction
	Shutdown
	C/C++:
	Delphi:

	Minimal Plug-in Example

	XRS Event Handling and Control
	Start-up Conditions
	Notifications
	Commands
	User Interface Control
	Taking Control of the Device’s Functions

	Memory Control
	Reading from Frequency Memory
	Modifying Frequency Memory
	File Selection
	Bank Selection
	Folder Manipulation

	DSP Control
	Analog to Digital Conversion
	Digital to Analog Conversion
	DSP Programming

	XRS API Reference
	Plug-in Functions
	xrsPluginInit
	C/C++:
	Delphi:
	Parameters
	iXRSVer
	lpServerId
	lpName
	cbName

	Return Value

	xrsPluginDone
	C/C++:
	Delphi:

	xrsPluginStart
	C/C++:
	Delphi:
	Parameters
	hAppWnd
	lpRadioInfo
	lpPluginProc
	lpFilterFlags

	Return Value
	Remarks

	xrsPluginNotify
	C/C++:
	Delphi:
	Parameters
	hAppWnd
	uMsg
	dwData
	cbData
	lpData

	Remarks

	XRS Functions
	xrsCopyRadioDevCaps
	C/C++:
	Delphi:
	Parameters
	DevCaps

	Return Value

	xrsFreeRadioDevCaps
	C/C++:
	Delphi:
	Parameters
	DevCaps

	xrsValidateServer
	C/C++:
	Delphi:
	Parameters
	lpServerId

	Return Value

	PluginProc
	C/C++:
	Delphi:
	Parameters
	hPlugin
	uMsg
	dwParam
	cbData
	lpData

	Return Value
	Remarks

	XRS Structures
	AGCEXCAPS
	C/C++:
	Delphi:
	Fields
	iMinAgcAttack
	iMaxAgcAttack
	iMinAgcHold
	iMaxAgcHold
	iMinAgcDecay
	iMaxAgcDecay

	AGCEXPARAMS
	C/C++:
	Delphi:
	Fields
	dwAgcAttack
	dwAgcHold
	dwAgcDecay

	CHANNEL_SCANNED
	Fields:
	MemoryIndex
	LiveSignal

	CLIENTSERVER
	C/C++:
	Fields:
	RemoteAddr
	Port

	DEMODDEF
	C/C++:
	Delphi:
	Fields
	iMode
	iMaxScanRate
	dwMinIfBw
	dwMaxIfBw
	iIfBwStep
	dwMaxIfShift
	dwMaxExData

	DEMODSIGNALDATA
	Fields:
	iSamplingRate
	iBitsPerSample
	iNumChannels
	iNumSamplesSets
	Samples

	DF_ANGLE_STRUCT
	C/C++:
	Fields:
	AveragedBearing
	StandardDeviation
	Quality factor

	DSPCAPS
	C/C++:
	Delphi:
	Fields
	szDspManufacturer
	szDspProduct
	dwDspFeatures
	iNumDspInputs
	iCodeWordSize
	iDataWordSize
	iExtWordSize
	dwCodeSize
	dwDataSize
	dwExtSize

	FREQRANGE
	C/C++:
	Delphi:
	Fields
	dwMinFreqkHz
	dwMaxFreqkHz
	iRfInputs

	GPS_POSITION
	C/C++:
	Fields:
	Longitude
	Latitude
	Altitude
	TimeStamp

	GRAPHEQCAPS
	C/C++:
	Delphi:
	Fields
	iLevelRange
	iLevelStep
	iNumFreqs
	iFreq

	MEMORYENTRY
	C/C++:
	Delphi:
	Fields
	cbSize
	szName
	dwFrequency
	dwStepSize
	dwMode
	dwModeExData
	dwSquelch
	dwRfInput
	dwAtten
	dwPreamp
	dwBandwidth
	dwAgc
	dwIfGain
	dwIfShift
	fAfc
	dwNumHits
	dwLastSLevel
	dwMaxSLevel
	dwNumSchedules
	dwScheduleOffset
	dwGroups
	dtStored
	dtModified
	dtRecalled
	fLockout
	szCallsign
	szComments

	MODDEF
	C/C++:
	Delphi:
	Fields
	iMode
	dwMaxParam1
	dwMaxParam2
	dwMaxParam3
	dwMaxParam4

	MODPARAMS
	C/C++:
	Delphi:
	Fields
	dwPrimaryModeParam1
	dwPrimaryModeParam3
	dwPrimaryModeParam4
	dwSecondaryCarrierFreq
	dwSecondaryModeParam1
	dwSecondaryModeParam2
	dwSecondaryModeParam3
	dwSecondaryModeParam4

	PARAEQCAPS
	C/C++:
	Delphi:
	Fields
	iMaxParaPoles
	iMinParaFreq
	iMaxParaFreq
	iMinParaQ
	iMaxParaQ
	iParaLevelRange
	iParaLevelStep

	PARAEQPARAMS
	C/C++:
	Delphi:
	Fields
	dwFreq
	dwQ
	dwLevel

	RADIODEVCAPS
	C/C++:
	Delphi:
	Fields
	cbTotalSize
	cbFixedSize
	cbFreqRangeSize
	szManufacturer
	szProduct
	szSerialNum
	szUserDefName
	dwAppVersion
	iDeviceNum
	dwFreqRes
	dwCalibrated
	lpToneCaps
	iMinBpFreq
	iMaxBpFreq
	lpParaEqCaps
	lpGraphEqCaps
	dwRxFeatures
	lpRxExtraInfo
	iSquelchFeatures
	iMinSquelchLevel
	iMaxSquelchLevel
	iMinSquelchNoise
	iMaxSquelchNoise
	iNumRxFreqRanges
	lpRxFreqRanges
	iNumRxModes
	cbDemodDefSize
	lpRxModeDefs
	iNumRfInputs
	iMaxAtten
	iAttenStep
	iMaxPreamp
	iPreampStep
	iAgcSpeeds
	lpAgcExCaps
	iMinIfGain
	iMaxIfGain
	iMaxVolume
	iVolumeStep
	iBalanceRange
	iBalanceStep
	iRxAudioSources
	iMaxNbThreshold
	iMaxNotchFreq
	iMaxNoiseReduction
	lpRxDspCaps
	dwTxFeatures
	lpTxExtraInfo
	iNumTxFreqRanges
	lpTxFreqRanges
	iNumTxModes
	cbModDefSize
	lpTxModeDefs
	iTxModSources
	iMaxTxPower
	iMaxAntiVox
	iAudioProcFlags
	cbAudioProcSize
	lpAudioProcCaps
	iTxSelCallTypes
	iMaxToneLevel
	iMaxToneDuration
	iTxInitiators
	iTxMaxReleaseDelay
	lpTxDspCaps
	dwMemFeatures
	dwMaxRecords
	iNumBanks

	RECORDINGPARAMS
	C/C++:
	Fields:
	FileName
	Params
	PauseIfNoSignal
	MaxRecSizeKB
	SizeToAutoIncrement

	SIGNAL_PARAMS
	C/C++:
	Fields
	dwFlags
	iFreqError
	dwFMDeviation
	dwAMDepth

	SQUELCHSETTINGS
	C/C++:
	Delphi:
	Fields
	dwSLevel
	dwNLevel
	dwCtcssFreq
	dwBurstType
	dwBurstData
	dwVoice
	iDCS

	Remarks

	TONECAPS
	C/C++:
	Delphi:
	Fields
	iBassRange
	iBassStep
	iMidRange
	iMidStep
	iTrebleRange
	iTrebleStep

	TXAUDIOPROC
	C/C++:
	Delphi:
	Fields
	dwCompression
	dwClipping
	dwAgc

	XRS Commands
	PM_CAPABILITIES
	Parameters
	dwParam
	cbData
	lpData

	PM_CONNECTREMOTE
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PM_CLOSED
	Parameters
	dwParam
	lpData

	Return Value

	PM_CREATEFOLDER
	Parameters
	dwParam
	lpData

	Return Value

	PM_DELETEFOLDER
	Parameters
	dwParam
	lpData

	Return Value

	PM_DISABLE
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_FILTERFLAGS
	Parameters
	dwParam
	lpData

	Return Value

	PM_GETMEM
	Parameters
	dwParam
	lpData

	Return Value

	PM_GETMEMFILE
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_GETNEXTFOLDER
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_GETNEXTMEM
	Parameters
	dwParam
	lpData

	Return Value

	PM_GETNEXTPLUGIN
	Parameters
	dwParam
	lpData

	Return Value

	PM_GETNUMMEMS
	Parameters
	dwParam
	lpData

	Return Value

	PM_GETSETTINGS
	Parameters
	dwParam
	lpData

	Return Value

	PM_GETSUBFOLDER
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_MINIMIZE
	Parameters
	dwParam
	lpData

	See Also

	PM_MOVEFOLDER
	Parameters
	dwParam
	lpData

	Return Value

	PM_OPENFOLDER
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_POWER
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_RECALLMEM
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_SELECTBANK
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_SETMEMFILE
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_STARTPLUGIN
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_STOPPLUGIN
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_STOREMEM
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PM_VISIBLE
	Parameters
	dwParam
	lpData

	See Also

	PMR/T_AUDIOFILTER
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR/T_DSPADCSTART
	Parameters
	dwParam
	lpData

	Return Value

	PMR/T_DSPADDINBUF
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PMR/T_DSPCLOSE
	Parameters
	dwParam
	lpData

	Return Value

	PMR/T_DSPDACSTART
	Parameters
	dwParam
	lpData

	Return Value

	PMR/T_DSPINPUT
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR/T_DSPREADBYTE
	Parameters
	dwParam
	lpData

	Return Value

	PMR/T_DSPSENDBUF
	Parameters
	dwParam
	lpData

	Return Value

	PMR/T_DSPSENDBYTE
	Parameters
	dwParam
	lpData

	Return Value

	PMR/T_DSPSTART
	Parameters
	dwParam
	lpData

	Return Value

	PMR/T_EXTOSC
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR/T_FREQ
	Parameters
	dwParam
	lpData

	Return Value

	PMR/T_FREQUENCY
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_AFC
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_AGC
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_ATTEN
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_AUDIOSRC
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_BALANCE
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_BANDWIDTH
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_BLOCKSCAN
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_DEMODSIGNAL
	Parameters
	dwParam
	cbData
	lpData

	PMR_DFANGLE
	Parameters
	dwParam
	cbData
	lpData
	Comments

	Return Value

	PMR_DFANGLEMODE
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PMR_DFAVGENABLE
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PMR_DFAVGLENGTH
	Parameters
	dwParam
	cbData
	lpData

	PMR_DFCOMPASS
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PMR_DFCOMPASSOFFSET
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PMR_DFCOMPASSPITCH
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PMR_DFCOMPASSROLL
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PMR_DFRPS
	Parameters
	dwParam
	cbData
	lpData

	Not used. Return Value

	PMR_DFSTART
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PMR_GPSPOS
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PMR_IFGAIN
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_IFSHIFT
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_IFSPECTRUM
	PMR_LOUD
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_MODE
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_MODEXDATA
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_MONO
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_MUTE
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_NOISEBLANKER
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_NOISEREDUCT
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_NOTCH
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_PREAMP
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_RECORDING
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PMR_RFINPUT
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_SIGNALPARAMS
	Parameters
	dwParam
	cbData
	lpData

	Return Value

	PMR_SQUELCH
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_STOPSCAN
	Parameters
	dwParam
	lpData

	Return Value

	PMR_TRACKID
	Parameters
	dwParam
	lpData

	Return Value

	PMR_TRUNKFREQ
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMR_VOLUME
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMT_ANTIVOX
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMT_AUDIOPROC
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMT_MODE
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMT_MODSRC
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMT_RFPOWER
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMT_SELCALL
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMT_TX
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	PMT_XMTCTL
	Parameters
	dwParam
	lpData

	Return Value
	See Also

	XRS Notifications
	PN_CAPABILITIES
	Parameters
	dwParam
	cbData
	lpData

	PN_CLOSE
	Parameters
	dwParam
	lpData

	See Also

	PN_DISABLED
	Parameters
	dwParam
	lpData

	PN_MEMBANK
	Parameters
	dwParam
	lpData

	See Also

	PN_MEMCHANGE
	Parameters
	dwParam
	lpData

	See Also

	PN_MEMFILE
	Parameters
	dwParam
	lpData

	See Also

	PN_MEMFOLDER
	Parameters
	dwParam
	lpData

	See Also

	PN_MEMRECALL
	Parameters
	dwParam
	lpData

	See Also

	PN_MINIMIZED
	Parameters
	dwParam
	lpData

	See Also

	PN_PLUGINSTARTED
	Parameters
	dwParam
	lpData

	See Also

	PN_PLUGINSTOPPED
	Parameters
	dwParam
	lpData

	See Also

	PN_POWER
	Parameters
	dwParam
	lpData

	See Also

	PN_SERVERLISTEN
	Parameters
	dwParam
	cbData
	lpData

	PN_VISIBLE
	Parameters
	dwParam
	lpData

	See Also

	PNR/T_AUDIOFILTER
	Parameters
	dwParam
	lpData

	See Also

	PNR/T_DSP
	Parameters
	dwParam
	lpData

	See Also

	PNR/T_DSPINBUFFULL
	Parameters
	dwParam
	lpData

	PNR/T_DSPINPUT
	Parameters
	dwParam
	lpData

	See Also

	PNR/T_DSPREQREAD
	Parameters
	dwParam
	cbData
	lpData

	PNR/T_DSPREQSEND
	Parameters
	dwParam
	cbData
	lpData

	PNR/T_DSPREQUEST
	Parameters
	dwParam
	lpData

	PNR/T_DSPSENDBUFDONE
	Parameters
	dwParam
	lpData

	PNR/T_EXTOSC
	Parameters
	dwParam
	lpData

	See Also

	PNR/T_FREQUENCY
	Parameters
	dwParam
	lpData

	See Also

	PNR_AFC
	Parameters
	dwParam
	lpData

	See Also

	PNR_AGC
	Parameters
	dwParam
	lpData

	See Also

	PNR_ATTEN
	Parameters
	dwParam
	lpData

	See Also

	PNR_AUDIOSRC
	Parameters
	dwParam
	lpData

	See Also

	PNR_BALANCE
	Parameters
	dwParam
	lpData

	See Also

	PNR_BANDWIDTH
	Parameters
	dwParam
	lpData

	See Also

	PNR_CHANNELSCANNED
	Parameters
	dwParam
	cbData
	lpData

	PNR_DEMODSIGNAL
	Parameters
	dwParam
	cbData
	lpData

	PNR_DFANGLE
	Parameters
	dwParam
	cbData
	lpData
	Comments

	PNR_DFANGLEMODE
	Parameters
	dwParam
	cbData
	lpData

	PNR_DFAVGENABLE
	Parameters
	dwParam
	cbData
	lpData

	PNR_DFAVGLENGTH
	Parameters
	dwParam
	cbData
	lpData

	PNR_DFCOMPASS
	Parameters
	dwParam
	cbData
	lpData

	PNR_DFCOMPASSOFFSET
	Parameters
	dwParam
	cbData
	lpData

	PNR_DFCOMPASSPITCH
	Parameters
	dwParam
	cbData
	lpData

	PNR_DFCOMPASSROLL
	Parameters
	dwParam
	cbData
	lpData

	PNR_DFRPS
	Parameters
	dwParam
	cbData
	lpData

	PNR_DFSTART
	Parameters
	dwParam
	cbData
	lpData

	PNR_GPSPOS
	Parameters
	dwParam
	cbData
	lpData

	PNR_IFGAIN
	Parameters
	dwParam
	lpData

	See Also

	PNR_IFSHIFT
	Parameters
	dwParam
	lpData

	See Also

	PNR_IFSPECTRUM
	PNR_LOUD
	Parameters
	dwParam
	lpData

	See Also

	PNR_MODE
	Parameters
	dwParam
	lpData

	See Also

	PNR_MODEXDATA
	Parameters
	dwParam
	lpData

	See Also

	PNR_MONO
	Parameters
	dwParam
	lpData

	See Also

	PNR_MUTE
	Parameters
	dwParam
	lpData

	See Also

	PNR_NOISEBLANKER
	Parameters
	dwParam
	lpData

	See Also

	PNR_NOISEREDUCT
	Parameters
	dwParam
	lpData

	See Also

	PNR_NOTCH
	Parameters
	dwParam
	lpData

	See Also

	PNR_PREAMP
	Parameters
	dwParam
	lpData

	See Also

	PNR_RECORDING
	Parameters
	dwParam
	cbData
	lpData

	PNR_RFINPUT
	Parameters
	dwParam
	lpData

	See Also

	PNR_SCANFINISHED
	Parameters
	dwParam
	lpData

	PNR_SCANNER
	Parameters
	dwParam
	lpData

	PNR_SIGNALPARAMS
	Parameters
	dwParam
	cbData
	lpData

	PNR_SLEVEL
	Parameters
	dwParam
	cbData
	lpData

	PNR_SLEVELDBM
	Parameters
	dwParam
	cbData
	lpData

	PNR_SQUELCH
	Parameters
	dwParam
	lpData

	See Also

	PNR_SQUELCHED
	Parameters
	dwParam
	lpData

	PNR_TRACKID
	Parameters
	dwParam
	lpData

	See Also

	PNR_TRUNKFREQ
	Parameters
	dwParam
	lpData

	See Also

	PNR_TRUNKID
	Parameters
	dwParam
	lpData

	PNR_VOLUME
	Parameters
	dwParam
	lpData

	See Also

	PNT_ANTIVOX
	Parameters
	dwParam
	lpData

	See Also

	PNT_AUDIOPROC
	Parameters
	dwParam
	lpData

	See Also

	PNT_MEASUREMENT
	Parameters
	dwParam
	lpData

	PNT_MODE
	Parameters
	dwParam
	lpData

	See Also

	PNT_MODSRC
	Parameters
	dwParam
	lpData

	See Also

	PNT_RFPOWER
	Parameters
	dwParam
	lpData

	See Also

	PNT_SELCALL
	Parameters
	dwParam
	lpData

	See Also

	PNT_TX
	Parameters
	dwParam
	lpData

	See Also

	PNT_XMTCTL
	Parameters
	dwParam
	lpData

	See Also

